Recap SWE233

SWE233: Intelligent User Interfaces
https://dayenam.com/teaching/swe233-fall2025/

DEVRNET
Fall 2025

Review of Ul papers

We read 20 papers!

-2010: 5
2011-2022: 6
2023-:9

ICSE/FSE: 5

CHI: 3

UIST: 7

Programming Language: 2
Others (Arxiv, IUI, ITS): 3

Oct 13

Oct 15

Oct 20

Oct 22

Oct 27

Due: Presentation slides

Oct 29

Nov 3

Due: Project Proposal

Nov 5

Nov 10

Nov 12

Nov 17

Due: Prototype Design

Nov 19

Integrated Development Environment (IDE)
« Code bubbles: rethinking the user interface paradigm of integrated development environments

« Productivity Assessment of Neural Code Completion

Conversational Ul |
« Grounded Copilot: How Programmers Interact with Code-Generating Models

« Why Jonny Can't Prompt: How Non-Al Experts Try (and Fail) to Design LLM Prompts

Conversational Ul Il
« Context-aware conversational developer assistants

« Need Help? Designing Proactive Al Assistants for Programming

Agents
« Magentic-UI: Towards Human-in-the-loop Agentic Systems

« Generative Agents: Interactive Simulacra of Human Behavior

Project Proposal & Feedback 1

Project Proposal & Feedback 2

User Modeling & Personalization
« Creating General User Models from Computer Use

« Supporting Reuse by Delivering Task-Relevant and Personalized Information

End Users |
« SQLucid: Grounding Natural Language Database Queries with Interactive Explanations

« Situated Live Programming for Human-Robot Collaboration

End Users Il
« ProgramAlly: Creating Custom Visual Access Programs via Multi-Modal End-User Programming

« Small-Step Live Programming by Example

ul
« Auto-Icon: An Automated Code Generation Tool for Icon Designs Assisting in Ul Development

« Sikuli: Using GUI Screenshots for Search and Automation

Collaboration
« Code space: touch + air gesture hybrid interactions for supporting developer meetings

« What would other programmers do: suggesting solutions to error messages

Debugging & Testing
« Debugging reinvented: asking and answering why and why not questions about program behavior

« NaNofuzz: A Usable Tool for Automatic Test Generation

Code Bubbles: Rethinking the User Interface Paradigm of |DE
Integrated Development Environments

Andrew Bragdon', Steven P. Reiss', Robert Zelezmk1 Suman Karumuri', William Cheung ,
Joshua Kaplan Christopher Coleman Ferdi Adeputra Joseph J. LaViola Jr.?

'Brown University 2University of Central Florida
Department of Computer Science School of EECS
{acb, spr, bcz, suman, jak2, wcheung, cjc3, jl@eecs.ucf.edu
fadeputr}@cs.brown.edu

i

MW-‘—‘W-&. Acd Cnsa g
[SRT——— = 208
privete static firel long secialversionadd « Arwabumze
I s e — * el
1 wtthe right tre =2
B CesGrimendation
B3 oeetebuston

§
2
)

{
|

i

[——

SBLLC Malnpunel (rase malrfrane){
TS, LAyt (e)}
Ormencs rswaels
TS createrropertybattens ()} lic vl Crestevipertydutions ()
_eleterageceletenstion. grtintascel
etton mrmxm«mwumu hia);
petiratanca(eaty _eeletesnage. setrecusmleidalse))
)
TN rasdomsrapese This.

crestetmscasasttan();

seringl] sessages - s, sublic Merudar cresterrber ()] °
cnarsis s acmer-sin "
M5 eSS e J
2w e 1w S gttt}
Swnkar sersbarathis.crestesndar(); 0w manae rwe
T s roe L Febbeos

SPApEIATIA() SNAPERNTTING « ThiS. e meeste new TR LS PNt

cresteviacessetany();
IPenel shapePanel o this.sebeiepedat torfenel(sevsar . add(meral);

et) B, M0 (Mered))

oot sty SIte Vel createnemai e W

X ePunscrseandler(); "t g
B ¥ — T A ace(Seveccationstton, et tastance(
Pwsel moreractisestunelenen Pune(new e] LR,

orlLonti®, 1) ia.crastowmd (o) - L e i
ol mrabocticen el el LS. restena(eens); San i

ere Functssns”, - gara—
eI RTINS I i -
et istoaned ass(ransomrages) reto s 4 2
m

Q] :

Reeanctiseanel s Tertarmstan) i 1= =

_ShseTieeasel « tew Shagelvfiranel(); -

A
’

Flg;re 1. The Code Bubbles IDE. See section 2 below, Scenario, and section 6 below, IDE User Interface, below. Resolution: 1920x1200 (space reserved for taskbar).

Productivity Assessment of Neural Code Completion IDE

Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Alice Li, Andrew Rice,
Devon Rifkin, and Edward Aftandilian

{wunderalbert,ikaliam,narphorium,hsenag,xalili,acr31,drifkin,eaftan}@github.com
GitHub, Inc.

USA accepted_per_shown
accepted_per_opportunity
unchanged_600_per_opportunity
unchanged_300_per_opportunity
unchanged_30_per_opportunity
unchanged_120_per_opportunity
unchanged_300_per_active_hour
unchanged_600_per_active_hour
unchanged_120_per_active_hour
unchanged_30_per_active_hour
accepted_per_active_hour
accepted_char_per_active_hour
shown_per_active_hour

shown_per_opposr}\uorwx Sp earman
unchanged_120_per_accepted correlation
unchanged_30_per_accepted 1.00

unchanged_300_per_accepted
unchanged_600_per_accepted
mostly_unchanged_120_per_accepted
mostly_unchanged_300_per_accepted
mostly_unchanged_600_per_accepted
mostly_unchanged_30_per_accepted
learn_from

less_time_searching
unfamiliar_progress

repetitive_faster

less_effort_repetitive

better_code

less_frustrated

focus_satisfying

more_fulfilled

stay_in_flow

tasks_faster
aggregate_productivity -

0.75
0.50
0.25
0.00

3233
ownn
azZ==
I ccc
=100 o £333558§
I_Ecccc c [+} Jnnn(’:nn
cE33333CE3 o n::::o::
S88088352 o TOODFSFR
a5 5as o, 232333788
TOODODITD FL2I300@ »
o 83333383 230008388
«Q Joooeese it goeacagrsaala
g §222228828 Fdo8 0L 20088
° g ca AOSCOL8S 2333'wR881.82%8
@ 4 So | ow-sow = 3380505088888 e
@ P woonNoOOowN bbbl f “3
F o~ b3 8l. ©60606066C hovvoovooklhhlkyd
87 SE L FEEEREREEE TR R RS
B 28 F¥=3 vyvovovoy RSSSSSSSRRI2QR
JEE3PPTAZRP SRR3R QR bmwmmmmmbbbbgﬁ
Sl sl L BT Z @ 8222880080888 D
qx<mma_325mmmmmmmmmm S5S5555 -
crl_I 8c83068835000902898, 8 B8BEBE8E
8 5Cat 8583°888888882233233388233333%
7 3 2333
.30 8205 S0 8C 88T 8a5 I SIS IIEEEEE S
5503508255000 0883388 2222222222323%
S22 c0aoalP@3accacaanas<S55558858883S38333

Grounded Copilot: How Programmers Interact with
Code-Generating Models

Conversational Ul

SHRADDHA BARKE®, UC San Diego, USA
MICHAEL B. JAMES®, UC San Diego, USA

: 20 WAL - . -
NADIA POLIKARPOVA, UC San Diego, USA 19 W b] TRl S o PR et
18 A C R I dill--l 1 - 4 | —— -
17 4 [- | W [|
16 A e oA fmm o d-m - e
_ 151 mwf hof e W HHE - b i e o
2 14 e b bt m -
£ 131 i U BN RIS T T SR e B R L 8)
2 12 4 moim | e e IR IRI] o (| weml orem | dm
2 114 e e Hih&!ﬂ i) e o el o
o 10 | — l-—_- o — i | =
.g- 9 - | 1l i 1- v - . -
£ 81 - o e | IIIHH L e I
S 71 | — i 1] - il]
6 ookt b - mm - e
5 1 — - 7] N - .
4 A - — oo [) | . o (it}
3 [S IS R I S R S R) fiwff
2 (N | o ———— [0 o ——— i
1 | b= W (S [5 o - !
Percent of study completed
Acceleration Exploration I Accept Suggestion

I Acceleration - Prompting
I Acceleration - Validating

I Exploration - Prompting
I Exploration - Validating

I Repair Suggestion
I Reject Suggestion

Fig. 3. Timeline of observed activities in each interaction mode for the 20 study participants. The qualitative
codes include different prompting strategies, validation strategies and outcomes of Copilot’s suggestions
(accept, reject or repair)

Why Johnny Can’t Prompt: Conversational Ul
How Non-Al Experts Try (and Fail) to Design LLM Prompts

J.D. Zamfirescu-Pereira Richmond Wong

zamfi@berkeley.edu rwong34@gatech.edu
UC Berkeley Georgia Institute of Technology
Berkeley, CA, USA Atlanta, Georgia, USA
Bjoern Hartmann Qian Yang .) . » N
bjoern@eecs berkeley.edn gianyang@cornelledu Conversations, Error Labeling, Testing Chatbot “Prompt Template ,
UC Berkeley Cornell University (@ @ @ | bot-designer.tid
BerkdeY’ CA’ USA Ithacav NY’ UsA C - Error B B Preamble instructions to the chatbot: task description & steps, example dialog, etc. (Required.)

You are a recipe instruction bot. Engage in conversation to walk the user through the

. following recipe for Mixed Veggie Tempura: o
Conversation editor @ | c-recipe-instructions-1-1663129591925 . © N o

SHOW RAW PROMPT | Ingredients:
- 1 Maitake mushroom

n Hi, today I'm going to help you e :;f:"‘i;’:‘:‘l‘”"‘
make Mixed Veggie Tempura. Are you ~1 cup flour .
ready? 2
FirstTurns Get the dialog going, alternate @ and §.. (Recommended.)
® Yes, I'm ready. What's should I do first? e @ BotFirst
Turns
ﬂ First, you need to gather your s snowrswun ﬂ Hi, today I'm going to help you make Mixed Veggie Tempura. Are you ready?
ingredients. You'll need: 1 Maitake =)

mushroom, 1 Acorn squash, 2 lemons, 1 cup flour, 1 cup
cornstarch, 2 teaspoons salt, 1 teaspoon baking soda, 2 cups
seltzer water, and flaky salt for finishing. [7x %

list too long xe $: Yes, I'm ready. What's should | do first?
=

% vait, slow down.

ﬂ Okay, sorry. Do you have all of the R

ingredients?

2]

Reminder Rreminds the bot of something just before prompting for a response. (Optional.)

Figure 1: BOoTDESIGNER main user interface. Right pane: the prompt template authoring area (1); designers use plain text here
to describe desired behavior for the chatbot they are developing. Left, tabbed pane: the conversation authoring area; here,
designers can send chat messages (2) to the bot defined by the current template on the right. A label button reveals a labeling
widget (3) that allows designers to attach an arbitrary text label to any bot-produced chat message, for aggregation and later
identification. A retry button (4), only visible after the prompt template has been changed, lets designers test what new bot
chat message would be produced, at that specific point in the conversation, as a result of the prompt template change. The
“Error Browser” tab (5) reveals a UI panel for designers to test prompt changes against all labeled bot responses, across all
conversations (see Figure 2).

Context-Aware Conversational Developer Assistants Conversational Ul

Nick C. Bradley Thomas Fritz Reid Holmes
Department of Computer Science Department of Informatics Department of Computer Science
University of British Columbia University of Zurich University of British Columbia
Vancouver, Canada Zurich, Switzerland Vancouver, Canada
ncbrad@cs.ubc.ca fritz@ifi.uzh.ch rtholmes @cs.ubc.ca

Conversation

-7

-

Natural

’, -Language
Standard

<—Development
Behaviour

Workflow
Actions

Figure 1: Devy’s architecture. A developer expresses their inten-
tion in natural language via the conversational layer. The intent
service translates high-level language tokens into low-level con-
crete workflows which can then be automatically executed for
the developer. Dotted edges predominantly communicate in the
direction of the arrow, but can have back edges in case clarifica-
tion is needed from the user.

Need Help? Designing Proactive Al Assistants for Programming

Conversational Ul

Valerie Chen Alan Zhu Sebastian Zhao
Carnegie Mellon University Carnegie Mellon University University of California Berkeley
Pittsburgh, Pennsylvania, USA Pittsburgh, Pennsylvania, USA Berkeley, California, USA
valeriechen@cmu.edu alanzhuyixuan@gmail.com sebbyzhao@berkeley.edu
Hussein Mozannar David Sontag Ameet Talwalkar
Microsoft Research Massachusetts Institute of Technology Carnegie Mellon University
Redmond, Washington, USA Boston, Massachusetts, USA Pittsburgh, Pennsylvania, USA
hmozannar@microsoft.com dsontag@mit.edu atalwalk@andrew.cmu.edu

Programmer Context Suggestion Generation

Code > e e, Interactive Interface

Brairmtorreing idex: Calcuiate toftal saies per egion]

Code Impeovernent: Make generate_szales_data more fadbie]

Testng: Valchats shupes of gererstec sdes data]

— LLMJ‘-> implementations

User Message History

How do | compate

Thars iz & Bug In vy code

Can you egiain

Terminal Output

waz

Figure 1: The implementation of a proactive chat assistant for programming. We introduce a proactive assistant that takes in
the programmer’s context, which includes the current code, user message history, and optionally terminal output, generates
a set of suggestions, which include a summary, implementation, and explanation of implementation, and then determines
whether it is timely to show the user in the interactive interface.

4
Magentic Ul

Magentic-UIl: Towards Human-in-the-loop Agentic Systems

Hussein Mozannar, Gagan Bansal, Cheng Tan, Adam Fourney,
Victor Dibia, Jingya Chen, Jack Gerrits, Tyler Payne, Matheus
Kunzler Maldaner, Madeleine Grunde-McLaughlin, Eric Zhu, Griffin
Bassman, Jacob Alber, Peter Chang, Ricky Loynd, Friederike
Niedtner, Ece Kamar, Maya Murad, Rafah Hosn, Saleema Amershi

Microsoft Research AI Frontiers

Co-Planning: Human-agent collaboration
plan creation and refinement

Co-Tasking: Real-time task execution with
human oversight and intervention

Agents

Action Approval: Safety gates requiring
human approval for critical actions

B Mo s & plan. You can edit & directly o Sroegh the chat.

Stap1 Market research and anayes

&

Step 2 [Dﬂhn.m«ﬂmxn(s J

&

Step3 Cowsts conten wralegy

&

VS Laaate Tanghe Town Puby Sreensit Uwe View
ontine systen

ez o 00 euven
Pertorwing wet searca 13 iacune Targe Town
JRE TR Cu——

© Vped Taage Tewn Al o wetuty
10 eench b

© 1 typad Tangs Town Pub ofMclyl webelie’ Mo the Browsar saarch b,

O Approval Rewsest

CHEk 00 10 Wk 0 A e T owpnss 16 aconss Tanpe Tews A0S

MO1 3 S0e wave and analy2e the... ® oo
Pt 3 sine wave and anafyze the. . Needs npat
Mokt Rmsearch Projmct @ Corrglates

ot commion em
Creme vass curcamn

© fate 7 - Cuman shn awmcwn wammary

@ A an s

. 2x30neg pavorm £Q verty caoe sera oo,
+ Ao Step
e 3 W e -
———— (6 e]
£ Waiting for pour inpat
Sesslons 0 Your Saved Plans Agart Action Senmary
" Soarched 1orMCP In marnkiidoms repo
+ New Session Papart with anaytics Located commit 3cat758
- — Vertted comelt deeats and mathae
Teday Aot Ok oy iy >
o
bossamsstiomed 3t from Googie Arwytcs
I Sewech for Andrew Ng's mant dclower.. @ Processing [T — AGgregue wci rece mercy Finad Asswer @) M Lowren
v

MCP (Madel Zomest Protocel) support was introduced to the
Microsottmrstdown reposiiony In commit 335756, thled “Basic
SSE MCP Sewer for MarkkDown [#11651°, authored by afourney on
March 26, 2@5.

Cormmit ScaD08 - Basic SSE MCP Sarver for MannDown

Multi-tasking: Concurrent session
management and monitering

Memory: Plan learning, storage, and reuse
for future tasks

Final Answer Verification: Human validation
and review of agent outputs and results

Figure 1: Magentic-Ul is an open-source research prototype of a human-centered agent that is
meant to help researchers study open questions on human-in-the-loop approaches and oversight

mechanisms for Al agents.

Generative Agents: Interactive Simulacra of Human Behavior

Joon Sung Park
Stanford University
Stanford, USA
joonspk@stanford.edu

Meredith Ringel Morris
Google DeepMind
Seattle, WA, USA

merrie@google.com

Joseph C. O’Brien
Stanford University
Stanford, USA
jobrien3@stanford.edu

Percy Liang
Stanford University
Stanford, USA
pliang@cs.stanford.edu

Agents

Carrie J. Cai
Google Research
Mountain View, CA, USA
cjcai@google.com

Michael S. Bernstein
Stanford University
Stanford, USA
msb@cs.stanford.edu

Joining for coffee at a cafe

. X" S

|
Takingawalk | —wr
}

w-_’ [Abigail] : Bey Klaus, mind if

I join you for coffee?
[Klaus]: Not at all, Abigail.

Finishing a
morning routine [John] : Hey, have you beard
anything new about the

oral election?
[Tom]: No, not really. Do you
know who is running?

el aa

Figure 1: Generative agents are believable simulacra of human behavior for interactive applications. In this work, we demonstrate
generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-five agents. Users can observe
and intervene as agents plan their days, share news, form relationships, and coordinate group activities.

Creating General User Models from Computer Use

User Modeling

Omar Shaikh Shardul Sapkota Eric Horvitz
Stanford University Stanford University Microsoft
Stanford, CA, USA Stanford, CA, USA New York, NY, USA Redmond, WA, USA
oshaikh@stanford.edu sapkota@stanford.edu shanrizvid@gmail.com horvitz@microsoft.com
Joon Sung Park Diyi Yang Michael S. Bernstein . - - -
Stanford University Stanford University Stanford University
Palo Alto, CA, USA Stanford, CA, USA Stanford, CA, USA e
joonspk@stanford.edu diyiy@cs.stanford.edu msb@cs.stanford.edu John & Emlly
o0e

YOU'RE INVITED

N S Re: Quals for Stanford
i was 10 the last time i CHICAGO, IL * JULY 2025 University Ph.Ds
wore a suit lol

1day ago General User
Model (GUM)
alls 0.4

C \ g -
the lab 0.9 quals next term 0.6

more Chai at home

Jses casual tone

Makes and eats ice Is a Ph.D. student at Pretentic
with friends 0.8 cream very regularl 0.9 tStanford University 0’8]

coffee o
Proposition Confidence
Doesn't own any 1.0 Likely going to friend’s 0.8 Needs to budget as a 0.6
suitable formal wear * wedding in Chicago * Ph.D. student .

sited to visit Be

N

L Searching for suit rentals

\ | found a suit rental in Chicago for
your friend's wedding that likely fits
your budget as a Ph.D. student [...]

Figure 1: General User Models take as input completely unstructured interaction data (top), transforming these observations
into structured propositions about a user (center). Together, these

propositions create a general user model (GUM). We instantiate
our user model in an assistant (GumBo) that proactively di s and suggestions on a user’s behalf (bottom).

Supporting Reuse by Delivering Task-Relevant and i
Personalized Information User MOdellng

‘ Yunwen Ye'? Gerhard Fischer”
SRA Key Technology Laboratory, Inc. 2Department of Computer Science
3-12 Yotsuya, Shinjuku, Tokyo 160-004, Japan University of Colorado
+1-303-492-8136 Boulder, CO80303-0430, USA
yunwen @ cs.colorado.edu +1-303-492-1502

gerhard@cs.colorado.¢

Mffers Files Tools Edit Socrch dule JIE Jow Help
This class sisulates the process of card dealing.
resresentad

Each card 15 /
with & rusber from 0 to 51, And the progrea producey’

a izt of 52 carcs, nuuumlndlr-a md-alrrf
public class CardDealer

stotie it 1) u—m int[52):

static
} for {int 1203 1C52; 1++) omds{i)=i:

/9% Creats a m linlu et
pblic static tnt m *0)

i - . A»k the default v_
{ o P
| Agerass | Fie:fijusrijavalighs.1 .N%ﬂn.m . \\
@ geiint -
right-click S
public static int getInt(int lo,
int ni) 3

Skip Conperents Herw .
Generate & random number using the default gener: veid naxtd java, aut, Contatim pa-ant) b user updating |
Card_agout P§ This Buffor Oaly /‘/
Java. ot * | T™is Ssssion Only
Quary Refinazant F 1 ANl Sassions -

Figure 3: The system architecture of CodeBroker
Components that match the queries, which are extracted from doc comments and signatures, are delivered after being
filtered with discourse models and user models. Discourse models (see Section 3.2.3) remove irrelevant components
(black dots), and user models (see Section 3.3) remove known components (unshaded dots). Discourse models and
user models can both be updated by users through the Skip Components Menu. User models are also
automatically updated when the system detects the reuse of a component in the workspace. Users who want to know
more about a component can go to the Java documentation by clicking on the delivered component.

SQLucip: Grounding Natural Language Database Queries with
Interactive Explanations

Yuan Tian Jonathan K. Kummerfeld
Purdue University University of Sydney
West Lafayette, IN, USA Sydney, Australia
tian211@purdue.edu jonathan kummerfeld@sydney.edu.au
Toby Jia-Jun Li Tianyi Zhang
University of Notre Dame Purdue University
Notre Dame, IN, USA West Lafayette, IN, USA
toby.j.li@nd.edu tianyi@purdue.edu

fightl = fignt

End Users

Sure! Pleasa chack and madify the explanation below

4

i (fhght price)

78

2

11601

Database (A)
on dutance e arign price
ton D 206 w Los Argeies asn
14 3 6 Angeies N
17s 2 Lee Angeies. m
1-3el 100 >
© Query Result

O] Query Explanation
© I~ table fight
° Keep the records where the ongin is *Los Angeles*
and the destination is "Honoluls”

© Return the minimum value of price ®8
by

» Show SOL m

Figure 3: The user interface of SQLucip. (A) The Database panel allows users to switch databases and tables in a database. It also
allows users to manually inspect, search, and filter data. (B) The Question panel allows users to ask a question to the database
in natural language. (C) The Query Result panel shows the query result as well as the intermediate result of individual steps
when the user clicks each step. (D) The Query Explanation panel renders the step-by-step SQL explanation in natural language.
Users can directly edit the explanation to fix the incorrect behavior in a step, add new steps, or delete existing steps.

Situated Live Programming for Human-Robot Collaboration

Emmanuel Senft
esenft@wisc.edu
University of Wisconsin-Madison
Madison, Wisconsin, USA

Michael Zinn
University of Wisconsin-Madison
Madison, Wisconsin, USA

Michael Hagenow
University of Wisconsin-Madison
Madison, Wisconsin, USA

Michael Gleicher

University of Wisconsin-Madison
Madison, Wisconsin, USA

Whole interface

Wizard

Figure 3: Interface workflow while creating a trigger-action pair to move all of the bolts from the green zone to the storage
box in the yellow zone. The top row represents the higher level flow: A. objects are on the robot’s table and the boxes on the
human’s table, with icons showing that the robot detected them. B. The user starts by labeling the interesting areas: one large
zone for all the objects and one smaller zone per box. C. The user creates trigger-action pairs. The bottom row presents a focus
on the wizard tool to create a trigger-action pair: Step 1: creating the condition: “if a bolt is in the green zone.” Step 2: Selecting
the action: “move bolt from the green to the yellow zone, in a box.” Step 3: Verifying and confirming the pair before adding it to

Robert Radwin
University of Wisconsin-Madison
Madison, Wisconsin, USA

Bilge Mutlu
University of Wisconsin-Madison
Madison, Wisconsin, USA

End Users

A. Initial Scene == B. Workspace zone labeling ~ ==» C. Trigger-action creation
E Orange 2 U Orange Zifs U
8 e - & “
B]
—_— - e -
e — T —|
l 5 4 B poY
. - -
Add 8 Rule! Add a Rule! Add a Rule!
Form Condition 1! W Form Acticn 1! L) Confirm the following rule: LI
Your Rule In Progress!
« When bott is I Green Zor B ° -mﬁ?‘,:\’:ﬁ:lmh.
D Ll e » soucic Ctec |
[e
| Aas o scin | roctn s |
Your Rule In Progress!
« When bt s bn Gresn Zone °
Step 1: Condition creation == Step 2: Action creation = Step 3: Rule summary

the robot program.

ProgramAlly: Creating Custom Visual Access Programs via
Multi-Modal End-User Programming

Jaylin Herskovitz Andi Xu Rahaf Alharbi Anhong Guo
University of Michigan University of Michigan University of Michigan University of Michigan
Ann Arbor, MI, USA Ann Arbor, MI, USA Ann Arbor, MI, USA Ann Arbor, MI, USA
jayhersk@umich.edu andixu@umich.edu rmalharb@umich.edu anhong@umich.edu
— Block-Based Programming ~ Natural Language Programming —

e

¢ Back ¢ Back

Chasen object: any text

Ride Share Program Bus Program

Miberrs Ctjects Test Oter

Program Summary:

Find any rursber on any bat.

Program Summary:
i ary teat on any icenss plats on sy ca
Thes, Snd ary cobar on any cr.

e oy by o the ks

Edit Program with # Question:

Edit Program with & Quastion:

Fxac the route name imteed

Edit Program Directly:

Edit Program Dirnctly:
pe
Find MIECE
On MILL T
On v o

qwertyulop qwertyulop

s dft ghijk.l

a s dft ghjk a
'xxcvbnm;!J

I st

‘g.

Generate from natural

Or, edit with a follow-up

_ Create programs by filling in parameters) & language queetion

-

End Users

By Example

420 9TI00 D901 1501 3477 1008 3063 24

Seckonc Rete Agproved 4201341

Demonstrate filtering by
selecting an item

Run Filtering Programs

Mo e found 06

Found due AN %) 2004, s opn b

Found dam JAN Y) 2004, acnge. lowe righe ot

J

Figure 1: ProgramAlly is an end-user programming tool for creating visual information filtering programs. ProgramAlly
provides a multi-modal interface, with block-based, natural language, and programming by example approaches.

Small-Step Live Programming by Example

Kasra Ferdowsifard
UC San Diego
kferdows @eng.ucsd.edu

Allen Ordookhanians
UC San Diego
aordookh@ucsd.edu

Hila Peleg
UC San Diego
hpeleg @eng.ucsd.edu

Sorin Lerner
UC San Diego
lerner@ cs.ucsd.edu

Nadia Polikarpova
UC San Diego
npolikarpova@eng.ucsd.edu

End Users

def inttiala(s): e
| letters = [var{0) 4or wer Lr s.aplit(” =)
* 8 . letters res = *
Augusta Ads Kirg pr—— ¢ betters o
. ['a*, 'a
fedtlals! asgusta Ada King')
Initialsd ' Mpnsta &t cing)
[-
(a) (¢)
def inltialsls) .-
]"?'"‘* - = = _ o war e s.aplit(” 7))
Sagants Ade o’ | [ESAERENIEEN ‘s tetters res
te
inttials(Augsata Ada Xing') A% "A 'a.8.x]
Indtials Aupusta ada sing)
(b) n
def inttials(a): def inttiala(s): Lo
¥ Syrthesizing. Plesae walt. .. letters = [var(0] for var La s.aplit(” "))
retarr ’ ’ ¥ Systhesizing. Plesse welt. ..
) e cing retury Fu 5
['a', &', v
Initialsd Augusta &da £ing)
- Inttials(' augesta A cirg')
(«©) o (=)
fof Ledtlalels) L
lesters = [var[#] for var in s.splitd” *)] - N
e L . letters
Augpuata As King® ['A°, AT, "C') . kemery res
[A' ‘A's 'K'] ‘AAK

Indtiale(Augusta Ada Kirg')

-

(d)

Inftialsd ‘Augesta Adu Cirg’)

— . (h)

Figure 1. Writing code using SNIPPY: (a)-(d) generates the first statement and (e)-(h) generates the second statement.

Auto-lcon: An Automated Code Generation Tool for Icon
Designs Assisting in Ul Development

Sidong Feng Jinzhong Yu
Suyu Ma Alibaba Group
Faculty of Information Technology Hangzhou, China
Monash University

jinzhong.yjz@alibaba-inc.com
Melbourne, Australia

sidong feng@monash.edu,suyu.mal@monash.edu

Chunyang Chen Tingting Zhou
Faculty of Information Technology Yankun Zhen
Monash University Alibaba Group
Melbourne, Australia Hangzhou, China
chunyang.chen@monash.edu

miaojing@taobao.com,shadow2597758@gmail.com

Input Image Approach
A Font Convertion
| m 43:1[] N o
2t mE(N
& m AW,
blackwhte ©dge detection Pofpgon optmIaton
B Prediction
" Iy .
\>/ 1
C Color Detection

V‘@”-'!‘-"

Ul

Output Code & File

iconfont.ttt
icontol

< class="icon-emoji blue"></i>

Figure 1: The approach of our tool, Auto-Icon, involving font convertion, prediction and color detection.

Sikuli: Using GUI Screenshots for Search and Automation Ul

Tom Yeh Tsung-Hsiang Chang Robert C. Miller

EECS MIT & CSAIL
Cambridge, MA, USA 02139
{tomyeh,vgod,rcm} @csail.mit.edu

Sikuli Search Search Documentations
PC Magusine Wisdom XP Mitrassh Mindews XP
Sohsens. pue 3 Siep by Step, pge 16
Capture Screenshot y

on the desktop. Ok “Browse“te ...

Downiasd free walipapars trom hetp/.

Thet it whare you can change the wal paper

Sikuli Script

0L 0571
pdfs = find() doubleClick(E) dragDrop(, ") Doumenss |)

Figure 1: Sikuli Search allows users to search docu-
mentation and save custom annotations for a GUI
element using its screenshot (captured by stretching a
rectangle around it). Sikuli Script allows users to au-
tomate GUI interactions also using screenshots.

2. Deleting Documents of Multlp_le Types

1: def recycleAll(x):
2: for region in find(x).ani ize().regions:

3: dragDrop(region,
.VA“ iz Y B J
4: patterns = [—“J, —J.)

5. for x in patterns:
6: recycleAll(x)

L . r . 1" . ‘s Pl ™~ feNy . L 1

Code Space: Touch + Air Gesture Hybrid Interactions for

Supporting Developer Meetings

Andrew Bragdon'?, Rob DeLine’, Ken Hinckley’, Meredith Ringel Morris’
'Microsoft, "Microsoft Research
Redmond, WA, 98052 USA
{anbrag, rdeline, kenh, merrie } @microsoft.com

Q& 6

Fig. 4. Pointing and manipulating with a touch-enabled
phone.

Collaboration

-/

~L L
7~
) |\ 'r’.z/
1 /
A

;’k-._“ S 1/.1

\\y A L i /) —_ W

Fig. 1. Code Space meetings include shared multi-touch
displays, depth cameras, mobile devices and cross-device
interaction

What Would Other Programmers Do?
Suggesting Solutions to Error Messages

Bjorn Hartmann', Daniel MacDougall?, Joel Brandt?, Scott R. Klemmer®

I-Computer Science Division
University of California, Berkeley, CA 94720
bjoern@cs.berkeley.edu

2-Stanford University HCI Group
Computer Science Dept, Stanford, CA 94305
{dmac jbrandt,srk } @cs.stanford.edu

Collaboration

® O Followl | Processing 0167

File Edit Sketch Tools Help

CCO BEEHE

000 HelpMeOut

£8® helpmeout %

flGat %= 1903 Error Message:
; 1.:1: ;[iw;nw Variable must provide either dimension expressions or an array initializer
(oot anglel = 6.1 Suggestion 1
float seglength =
Before (Broken) After (Fixed) |
oid setup() { 2int y[) = new int[]; 2int y[] = new int(width];
size(208, 200);| more info | vote up | vote down | find line | copy fix
NHM"();
trokeveont (20| Suggestion 2
troke(®, 100);
3 r Before (Broken) After (Fixed)
2float arr[) = new float[]); 2float arr[)] = {0.0, 0.33, 0.66, 1.0};
oid drav() { more info | vote up | vote down | find line | copy fix 3
2 v

backgr 1(226)

float dy = mouseY - y;
ke 2 A AN

el

Variable must provide either dimension expressions or an array initializer

Figure 2. The HelpMeOut Suggestion Panel shows possible
corrections for a reported compiler error.

Distinguished Paper

Debugging Reinvented: Asking and Answering Why and
Why Not Questions about Program Behavior

Amy J. Ko and Brad A. Myers
Human-Computer Interaction Institute
School of Computer Science, Carnegie Mellon Universi
5000 Forbes Avenue, Pittsburgh, PA 15213

{ajko, bam}@cs.cmu.edu

Debugging

N

f
I._ f \
|

showing mouse drag avants

whyy did x1 =777
why did y1 = 2747
why did x2 = 757
why did y2 = 2557

why did font =

() why did this execute?

4 ®
/1) why did color = rgb(0,0,0)?

/*pp(2) why did this = PenciPaint 525 3

[}
Color
AR YY)

+ (default package)
— edu.cmu hcii.paint
+ Actons java
EraserPaintjava
PaimCanvas java
PaimObject java
PainmObjectConstructor java
PaimObjectConstructorliste
PaintWindow java
PaimtWindow$ 1.class
PaintWindow$1()

stateChanged()
© PaimWindow$2 class
+ PaintWindow$3.class
+ PaimtWindow.class
PencilPaintjava
PencilPaintclass
PencilPaini()
define()
getBoundingBoxy)
QetEndX()
QetEndY()
etStantX()
QetStany()
painy)

e

+ Javaawt
+ Java awlevent
+ Javax swing

Q why dia color =7
A These events were ovont
responsible.

(] (e] (o] o] (] (o | (e

thread
man-0

\ search code...

)

5] wmos -

start of proaram

k
]
“'Aerv:z:oms"‘."'

{) why did this execute?

(1) wivy did gefValue() return 0? (producer)
{2) whyy did gefValue() return 07 (producer)
JoprA3) Wiy did getViakia() return 07 (producar)

v

Color
#10.941

(s5)

AN L

graphics | text exceptions

J

threads waicn 1 [expiain | [show cai

AWTEvenQueueD-5
PainfWindow$ 1 : stateChanged|
+ this = PaintWindow$1 #3742

JShder : fireStateChanged|)
ModelLisiener - stateChanged|)
DefaultBoundedRangeMode! :
DefauliBoundedRangeMode! : set
DefauliBoundedRangeMode! : set
JShder : setValuelsAdjusting|)
TrackListener : mouseReleased!)

+ Component : processMouseEven

7

-

-

Figure 1. Using the Whyline: (1) The developer demonstrates the behavior; (2) after the trace loads, the developer finds the
output of interest by scrubbing the I/O history; (3) the developer clicks on the output and chooses a question; (4) the Whyline
provides an answer, which the developer navigates (5) in order to understand the cause of the behavior (6).

P

NaNofuzz: A Usable Tool for Automatic Test Generation
Matthew C. Davis Sangheon Choi Sam Estep

Carnegie Mellon University Rose-Hulman Institute of Technology Carnegie Mellon University
Pittsburgh, Pennsylvania, USA Terre Haute, Indiana, USA Pittsburgh, Pennsylvania, USA
mecd2@cs.cmu.edu chois3@rose-hulman.edu estep@cmu.edu

Brad A. Myers Joshua Sunshine
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, Pennsylvania, USA Pittsburgh, Pennsylvania, USA

bam@cs.cmu.edu sunshine@cs.cmu.edu

Fle Edit Selection View Go Run Terminal Help

Testing

£ paz (Cosmpaces) namoe

AutoTest: gramSchmidt|) X

exavples 5 1015 > @ gramSchmidiHelpe AU‘OTQS‘ gnmschmm() wlinputs:
1 je
2 « Adspted from: https://github.com/joellegg/gram-schaidt matrix: numbaer[][] =
3 . Minimum vk Mutirm value
s 4 + The Gras-Schaidt precedure finds an orthosormal Basis for a vecter space given) 0 10
5 * set of vectors that span it. As an exasple, the wvectors (4,0,8) and (<
o * 3 two-dimensional subspace, Agplying the Gras-Scheidt procedure to t d * integer Float
7 * would yield a new pair of vectors: Array(]: min langth Asray[]: max length
8 * the same subspace as the originals, but they are orthogonal and have U . 2
9 . =
' " * Note: A previous reutise (not iscluded here) ensures: Array(](}: min length Array[1(): max length
n * - The vectors contain fisite integers >= @ that are neither null nor NaN. 2 2
12 ¢ = The irgut vectors are all of the same length.
Test | More opticns
13 .
1 * gparan matrix array of fisite Iateger vectors w/contents >= & Invelid Outouts (88 .
ans
L) * @returns array of vectors that span the same subspace as the inpst vectors
6 / .
] s These cutputs contain: null, NaM, infinity, or undefined
7 input: matrix output
18
19 return arr.revers ([%0,8),(%0.8]) [[0.7808688004430304,0.6246050475544243], [NaN,NaN]|
j' } [10,0],(6,6]) [[0.7071067811885476,0, 70710678 11865476], [NaN, NaN]]
22 function gramScheidthelper(matrix: nusser(]()}: {12,11,(8,4]) [[0.8944271909999159,0.4472135954999579], [NaN,NaN]]
23 if (matrix.lesgth ses 8) { o .
24 returs satrix; (8.2),(0.01) [[NaN NaN] [NaN NaN]|
3) else (110,01,(3,31) [(0.7071067811865476,0. 707106 7811865476, [NaN, NaN]]
2% let newVec = matrix[0);
n const restv = matrix.slicell); ([%0.71.[0,0}] [[NaNNaN] [NaN,NaN]|
bl censt rest = graSchaidteelper(restVecs);
), (4,0 1,0, [NaN,NaN)
Y 14,01} [[1,01.INaNNaN]]
" /7 orthogonalization (10,10),(0,3]) [[0,7), [NaN NaN])
n A2 lress.lesgth > 8) 4

Codespaces

Lapeut: U.S

Figure 1: The NaNofuzz user interface in the Visual Studio Code IDE provides one-click test generation for TypeScript programs.
Key UI elements: (1) AutoTest button above a function signature, (2) NaNofuzz testing window beside the program under test,
(3) Customizable input parameters with default values, (4) Test button to start NaNofuzz, (5) Advanced options, (6) Categorized

testing results with likely bugs prioritized in the display, (7) Pin button to add test cases to the test suite in Jest format.

Evaluation Methods

Code bubbles: rethinking the user interface paradigm of integrated development environments
Magentic-Ul: Towards Human-in-the-loop Agentic Systems

Table 1: Performance of Magentic-Ul compared to a selection of baselines on the test sets of
GAITA and AssistantBench and on WebVoyager and WebGames. The numbers reported denote the
exact task completion rate as a percentage. All results for baselines are obtained from either the
corresponding benchmark leaderboard, academic papers or blog posts as of July 6 2025.

*: On WebVoyager we ran Magentic-UI with only the WebSurfer agent so that we test only for web
browsing abilities.

**. On WebGames, we ran Magentic-UI with only the WebSurfer and FileSurfer using GPT-40 and
with two additional tools to the WebSurfer: uploadFile and generalClick (allows for right-click and
holding clicks).

Quantitative Analysis

Method GAIA AssistantBench WebVoyager WebGames
(accuracy)
Magentic-One (4o, o1) 38.00 27.7 - -
SPA — CB (Claude) [109] - 26.4 - -
Su Zero Ultra (no public info) 80.04 - - -
tt_api_1 (GPT-40) (no public - 28.30 - -
info)
AWorld (Claude Sonnet-4, Gem- 77.08 - - -
Bt e deniti, = A8 ini 2.5-pro,4o, DeepSeek-v3) [4]
Fig?lre 1. The Code Bubbles IDE. See section 2 below, Scenario, and section 6 below, IDE User Interfacs, below. Resolution: 1920x1200 (space ;eseed fnnaskbar}. Langfun Agent 2.3 8 73.09 - - -
Claude Computer-Use [3] - - 52 35.3
) Proxy - - 82 43.1
How many functions can one see on screen OpenAl Operator [57] 12.3 (40), - 87.0 -
: n 62.2 (03)
SImUItaneOUSIy) . GPT-4o (SoMs—+ReAct) [83] 6.67 (no 16.5 (no tools) 64.1 [28] 412
How many Ul operations must one use to create tools)
Browser Use [54] - - 89.1 -

concurrently-visible working sets?
Human 92.00 - - 95.7

Magentic-UI (04-mini) 42.52 27.6 82.2% 45.5%*

https://ieeexplore.ieee.org/document/6062113
https://arxiv.org/pdf/2507.22358?

Qualitative Analysis

We analyzed free-form post-survey data qualitatively
using the inductive thematic analysis procedure

the third author established replicability of the
second author’s result by re-coding the data for five
random participants using the second author’s
codes. This resulted in a substantial [36] level of
inter-rater reliability (= 0.6962).

NaNofuzz: A Usable Tool for Automatic Test Generation

Generative Agents: Interactive Simulacra of Human Behavior

T1:

T2:
T3:
T4:
T5:
Te:

T7:

Automation can reduce human cognitive effort required for
creating test cases.

Automation can reduce manual labor for creating tests.
Flexibility is valuable—when I need it.

I need to specify what correctness means.

Building a test suite can require iteration and exploration.
Understanding many test outputs helps me understand the
program behavior and be more confident.

Intuitive tool design can reduce barriers.

Furthermore, the first author conducted an inductive analysis [95] to study the qualitative
distinctions between the responses produced in each condition. We employed qualitative open
coding [33] in two phases. In the frst phase, we generated codes that closely represented the
generated responses at the sentence level. In the second phase, we synthesized the resulting
codes from the frst phase to extract higher-level themes. We utilized these themes to compare the

types of responses generated in our study.

https://dl.acm.org/doi/pdf/10.1145/3611643.3616327
https://dl.acm.org/doi/pdf/10.1145/3586183.3606763

Grounded Copilot: How Programmers Interact with Code-Generating Models

Grounded Theory

Table 1. Participants overview. PCU: Prior Copilot Usage. We show the language(s) used on their task, their
usage experience with their task language (Never, Occasional, Regular, Professional), whether they had used
Copilot prior to the study, their occupation, and what task they worked on.

ID | Language(s) | Language Experience PCU | Occupation Task . . L.

P1 | Python Professional Yes | Professor Chat Server As opposed to eva|uat|ng fixed, a priori hypotheses, a

P2 | Rust Professional No | PhD Student Chat Client .

P3 | Rust Occasional No | Professor Chat Client study using the GT methodology seeks to generate new
P4 | Python Occasional Yes | Postdoc Chat Server H H H

75 Pt Regutar NoT Sotwars Ergineer e hy_potheses in an overarching theory d_eveloped without
P6 | Rust Professional Yes | PhD Student Chat Server prior theoretical knowledge on the topic. A researcher
e R B produces this theory by constantly interleaving data

P9 | Rust! Occasional No | Undergraduate Student Benford’s law CcO | |eCt|On and data anaIyS|S .

P10 | Python Occasional No | Undergraduate Student Chat Client

P11 | Rust+Python | Professional + Professional | Yes | Cybersecurity Developer | Benford’s law e

P12 | Rust+Python | Professional + 9ccasional Yes | Software Engineer Benford’s law We beg an our Study With the bl an k SI ate q uesti on: € H ow
P13 | Rust+Python | Regular + Occasional Yes | PhD Student Benford’s law . . . ” .

P14 | Python Professional No | PhD Student Advent of Code dO pl’OgrammerS Intel‘act Wlth COleOt? Our b|m0da|

P15 | Python Professional Yes | PhD Student Advent of Code i i

P16 | Haskell Professional No | PhD Student Advent of Code theory Of acceleratlon and eXp|OratI0n WaS nOt yet formed)
P17 | Rust Professional Yes | Founder Advent of Code DU r|ng eaCh SeSS|On, we tOOk nOteS tO gUIde our semi-

P18 | Java Occasional No PhD Student Advent of Code H H

P19 | Python Occasional No | PhD Student Advent of Code StrUCtu red InterVIeW'

P20 | Haskell Occasional Yes | PhD Student Advent of Code

https://dl.acm.org/doi/10.1145/3586030

Design Probe

Conversations, Error Labeling, Testing

e o @ | bot-designer.tid

Why Jonny Can't Prompt: How Non-Al Experts Try (and Fail) to Design LLM Prompts

Chatbot “Prompt Template”

Conversations Error Browsete

Conversation editor @ / p -1-16631295919 a
SHOW RAW PROMPT
W Hi, today I'm going to help you a
make Mixed Veggie Tempura. Are you
ready?
9 Yes, I'm ready. What's should I do first? a
W First, you need to gather your «RETRY

ingredients. You'll need: 1 Maitake

mushroom, 1 Acorn squash, 2 lemons, 1 cup flour, 1 cup
cornstarch, 2 teaspoons salt, 1 teaspoon baking soda, 2 cups
seltzer water, and flaky salt for finishing. [7x

list too long xe

9 wait, slow down. e

- Okay, sorry. Do you have all of the s
ingredients?

* { send]

12

Preamble instructions to the chatbot: task description & steps, example dialog, etc. (Required.)

You are a recipe instruction bot. Engage in conversation to walk the user through the
following recipe for Mixed Veggie Tempura:

Ingredients:

- 1 Maitake mushroom

-1 Acorn squash

- 2 lemons

-1 cup flour %

FirstTurns Get the dialog going, alternate g and §:. (Recommen: ded.)
BotFirst
Turns

\a# Hi, today I'm going to help you make Mixed Veggie Tempura. Are you ready?

=]

@ Yes, I'm ready. What's should | do first?

=]

+ add new

Reminder Reminds the bot of something just before prompting for a response. (Optional 1)

Figure 1: BOTDESIGNER main user interface. Right pane: the prompt template authoring area (1); designers use plain text here
to describe desired behavior for the chatbot they are developing. Left, tabbed pane: the conversation authoring area; here,
designers can send chat messages (2) to the bot defined by the current template on the right. A label button reveals a labeling
widget (3) that allows designers to attach an arbitrary text label to any bot-produced chat message, for aggregation and later
identification. A retry button (4), only visible after the prompt template has been changed, lets designers test what new bot
chat message would be produced, at that specific point in the conversation, as a result of the prompt template change. The
“Error Browser” tab (5) reveals a Ul panel for designers to test prompt changes against all labeled bot responses, across all

conversations (see Figure 2).

We want to dive deep into what those
struggles reveal about people’s assumptions
and understanding of prompt-based systems
in order to inform how end-user-facing
prompt design tools might best support
their users.

We developed a no-code prompt design tool,
BotDesigner, as a design probe [6], and
conducted a user study with components of
contextual inquiry and interview. We chose to
create a design probe because the robustness
of prompt strategies is highly dependent on
specifc conversational contexts, as is users’
ability to create prompts and debug. Enabling
people to engage in designing LLM-and-
prompt-based chatbots hands-on offers
deeper insights than conducting interviews
about hypothetical scenarios alone.

https://dl.acm.org/doi/10.1145/3544548.3581388

Context-Aware Conversational Developer Assistants

NaNofuzz: A Usable Tool for Automatic Test Generation

User study

Group A
Participants

. Group B

Participants
(n=14)

Figure 3: Visualization of study task sequence (see Section 5). Participants are randomly assigned by pairs into Group A or
Group B, which determines the treatment for each task. Shaded tasks (e.g., tutorials) are not time-limited.

Tutorial Task 1 Tutorial

Task 3 Task 4 Task 5 Task 6

Measurements Coll d from Tasks 1-6:

Count of Bugs Elicited (RQ1.1)
Bug Description Accuracy (RQ1.2)
Participant Confidence (RQ2)
Velocity (RQ3)

PohE

7 12

Bugs Elicited
@
Bug Description Accuracy
.
® S

o

3 4

Jest NaNo Jest NaNo

(1) Bugs Elicited @)A

Confidence (Sum of Likert Scales)

Measurements Collected from Post-Survey:
5. Task Usability (Diagnostic)

6. Tool Realism (Diagnostic)

7. Tool Comparison (Diagnostic)

100

F 60

2 g

g 3

: s

2 50 @

g g

£ =

& |

= 2 o

T 40 g

a ®

)

= &

30 40

Jest NaNo Jest NaNo Jest NaNo
i Confid (4) Task Time (5) Usability

Figure 5: Violin plots showing the distribution of results by treatment for Measures 1-5. Y-axis for Measures 1-4 shows the sum
of six tasks for paired participants. Y-axis for Measure 5 is the SUS [9] score range. The mean is indicated by a black dot. Grey
dots indicate observations. Wider areas of the plot indicate a larger number of observations.

Table 3: Order, sample questions, and tasks from our mixed
methods study.

Interview - Part One

1.1 'Walk me through typical development tasks you work on every day.
1.2 How do you choose a work item; what are the steps to complete it?
1.3 How do you debug a failed test?

2 To help you get familiar with Alexa, ask Alexa to tell us a joke.

3 Can you think of any tasks that you would like to have “magically”
completed by either talking to Alexa or by typing into a natural
language command prompt?

Experiment - Interaction Task (T1)

Complete the following tasks:
Launch Devy by saying “Alexa, launch Devy” [..]

T1.1 Using Devy, try to get the name of the person whom you might
contact to get help with making changes to this ‘readme’ file.

T1.2 Next, make sure you are on branch ‘iss2’ and then make a change
to this ‘readme’ file (and save those changes).

T1.3 Finally, make those changes available on GitHub.

Experiment - Demonstration Task (T2)

Complete the following tasks:

T2.1 Say “Alexa, tell Devy to list my issues.” to list the first open issue on
GitHub. List the second issue by saying “Next”, then stop by saying
“Stop”. Notice that the listed issues are for the correct repository.

T2.2 Say “Alexa, tell Devy I want to work on issue 2.” to have Devy
prepare your workspace for you by checking out a new branch.

T2.3 Resolve the issue: comment out the debug console.log on line 8 of
log. ts by prepending it with //. Save the file.

T2.4 Say “Alexa, tell Devy I’m done.” to commit your work and open a
pull request. Devy will ask if you want to add the new file; say “Yes”.
Next, Devy recommends up to 3 reviewers. You choose any you
like. When completed, Devy will say it created the pull request and
open a browser tab showing the pull request. Notice the reviewers
you specified have been added. Also, notice that tests covering the
changes were automatically run and the test results were included
in a comment made by Devy.

Interview - Part Two

1 Imagine that Devy could help you with anything you would want,
what do you think it could help you with and where would it provide
most benefit?

2 Are there any other tasks / goals / workflows that you think Devy
could help with, maybe not just restricted to your development tasks,
but other tools you or your team or your colleagues use?

3 When you think about the interaction you just had with Devy, what
did you like and what do you think could be improved.

4 Did Devy do what you expected during your interaction? What
would you change?

5 Do you think that Devy adds value? Why or why not?

https://dl.acm.org/doi/pdf/10.1145/3180155.3180238
https://dl.acm.org/doi/pdf/10.1145/3611643.3616327

Administrivia

Final Presentation (Dec 1 & Dec 3)

- 10 minutes per presentation with 3 minutes for questions and discussion.
- Presentation order will be random
- In-class activity: Q&A after each presentation

Final Report (+Implementation) (Due Dec 10)

- 10% for holistic evaluation

- Please refer to the papers we read in designing and writing evaluation plans
and the threats to validity section.

- No results section needed.

