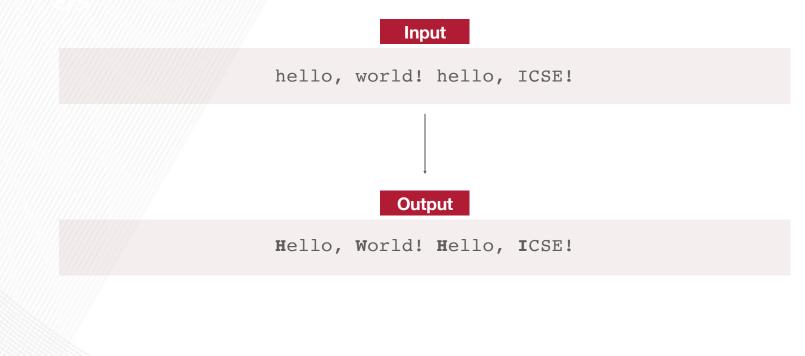


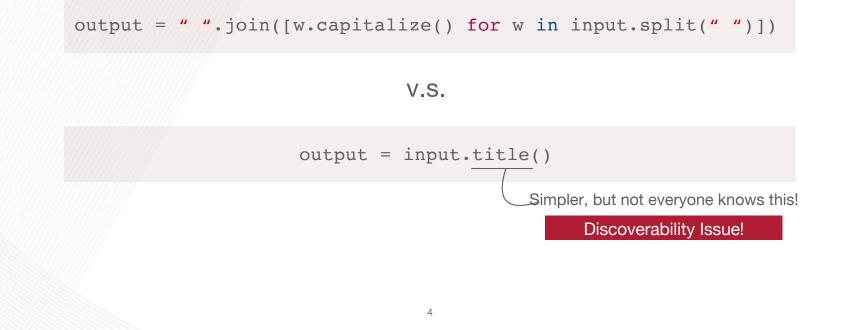
A Case Study of Comparable API Methods

Daye Nam dayen@cs.cmu.edu

Brad Myers bam@cs.cmu.edu


Bogdan Vasilescu vasilescu@cmu.edu

Vincent Hellendoorn vhellend@andrew.cmu.edu


Python code to capitalize all the words in a sentence?

Python code to capitalize all the words in a sentence?

output = " ".join([w.capitalize() for w in input.split(" ")])

Python code to capitalize all the words in a sentence?

3

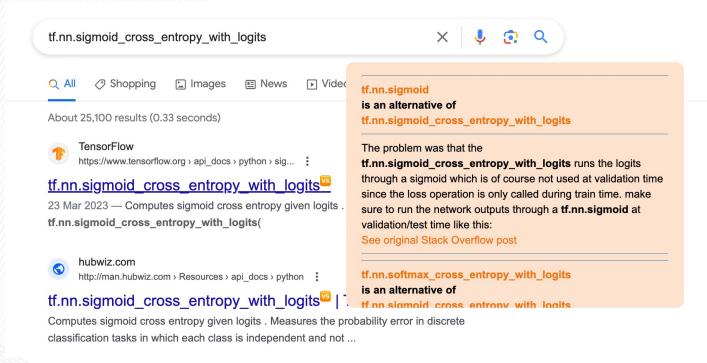
Developers face difficulties in finding appropriate methods!

Loss and accuracy are 0 when using a neural network with a single output neuron tensorflow

Ask Question

Asked 5 years, 9 months ago Modified 5 years, 9 months ago Viewed 779 times

I am writing a binary classifier, for a certain task and instead of using 2 neurons in the output layer I want to use just one with a sigmoid function, and basically output class 0 if it is lower than 0.5 and 1 or erwise.


The images are loaded, resized to 64x64 and flattened,to create facsimile of the problem). The code for data load will be present at the end. I create the placeholders.

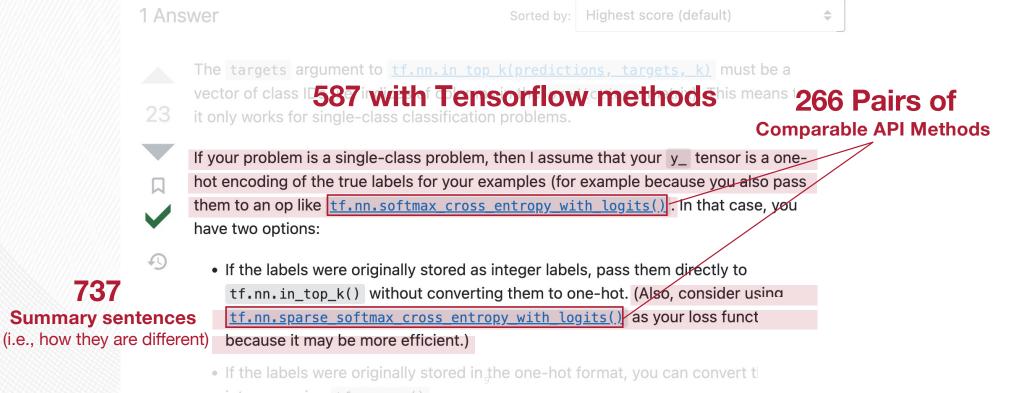
Developers face difficulties in finding appropriate methods!

Loss and accuracy are 0 when using a neural network with a single output Ask Question neuron tensorflow Asked 5 years, 9 months ago Modified 5 years, 9 months ago Viewed 779 times					
2	I am writing a binary classifier, for a certain task and instead of using 2 neurons in the output layer I want to use just one with a sigmoid function, and basically output class 0 if it is lower than 0.5 and 1 otherwise.				
3	The images are loaded, resized to 64x64 and flattened,to create facsimile of the problem). The code for data load will be present at the end. I create the placeholders.				
1 Ans	Swer Sorted by: Highest score (default)				
1 •	I think that you should use <code>tf.nn.sigmoid_cross_entropy_with_logits</code> instead of <code>tf.nn.softmax_cross_entropy_with_logits</code> because you use sigmoid and 1 neuron in output layer.				
	Also you need to remove the sigmoid from the last layer in the create_model_linear and, you're Discoverability Issue! be of the following form.				
	6				

Hypothesis

Providing comparable API methods will help developers understand the design space of APIs

7


A Case Study of Comparable API Methods

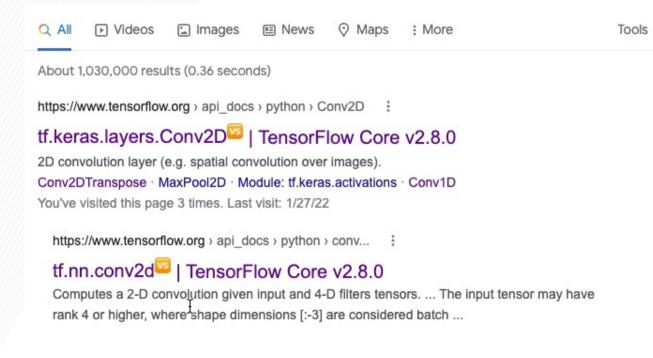
Dataset	Hypothesis Testing	Automation
Annotation protocol & 266 pairs of comparable	Prototype tool & human subjects study	SOREL: A deep-learning-based
Tensorflow API methods	with 16 participants	knowledge extraction engine

Dataset

Dataset

Manual Annotation of Stack Overflow Answers

integers using tf.argmax():


A Case Study of Comparable API Methods

Dataset	Hypothesis Testing	Automation
Annotation protocol & 266 pairs of comparable	Prototype tool & human subjects study	SOREL: A deep-learning-based
Tensorflow API methods	with 16 participants	knowledge extraction engin

Hypothesis Testing

Prototype

Show comparable API methods in Chrome

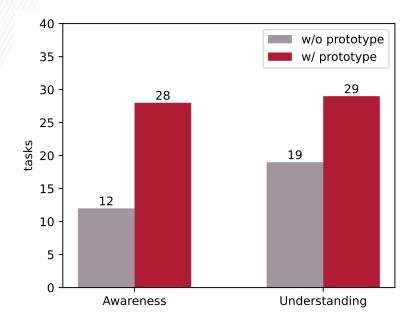
Hypothesis Testing

Study Design

Participants & Tasks

- Recruited 16 participants who know ML, but not TF
- ▶ 8 tasks (e.g., image processing)
- Participants used web search, with and without the prototype, to find appropriate TF methods
- Collected both quantitative and qualitative data

r 1 ...


Select rows from tensor input1 if the corresponding value in tensor input2 is True.

Hypothesis Testing

Study Results

When using the prototype,

participants were more aware of comparable API methods (p=0.0015) and had a better understanding of the differences (p=0.0056).

A Case Study of Comparable API Methods

Dataset	Hypothesis Testing	Automation
Annotation protocol &	Prototype tool &	SOREL:
266 pairs of comparable	human subjects study	A deep-learning-based
Tensorflow API methods	with 16 participants	knowledge extraction engine

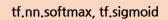
Model Architecture

Sorted by: Highest score (default)

ared Aug 2, 2017 at 11:26

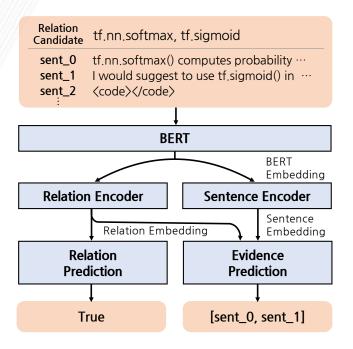
Andrey Lukyanenko 2,998 • 2 • 16 • 21

I think that you should use tf.nn.sigmoid_cross_entropy_with_logits instead of tf.nn.softmax_cross_entropy_with_logits because you use sigmoid and 1 neuron in 1 output laver

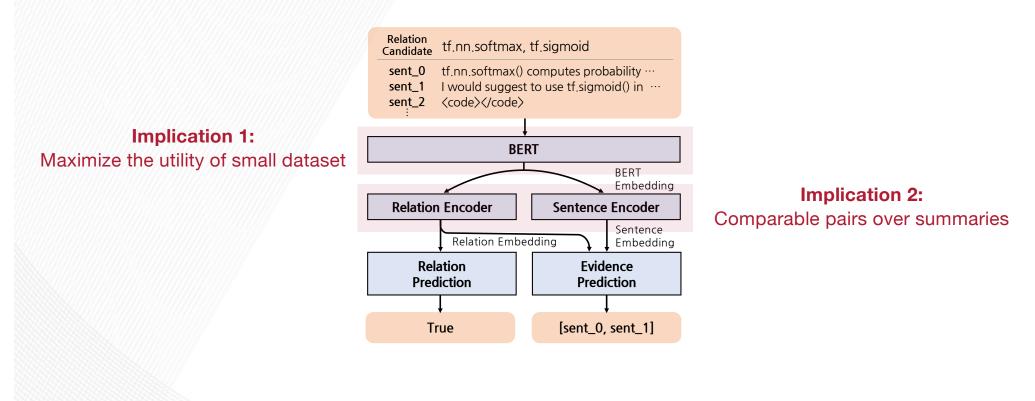

- Also you need to remove the sigmoid from the last layer in the create_model_linear
- and, you're not using your y label, accuracy has to be of the following form

correct = tf.equal(tf.greater(tf.nn.sigmoid(prediction),[0.5]),tf.cast(y,'b edited Aug 2, 2017 at 11:37

Vahagn Tumanyan 441 • 1 • 11 • 27

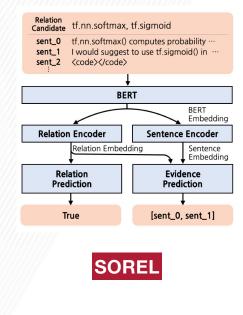

Share Follow

BERT ence Encoder Stack Overflow RELation extractor Relation Evidence Prediction



I think that you should use tf.nn.sig moid_cross_entropy_with_logits instead of tf.nn.softmax_cross_entr opy_with_logits because you use sigmoid and 1 neuron in output...

Model Architecture


Model Architecture

17

Evaluation

Comparison with existing information source and baselines

 tf.nn.sigmoid_cross_entropy_with_logits vs|
 X

 tf.losses.sigmoid_cross_entropy vs tf.nn.sigmoid_cross_entropy_with_logits

 tf.ins.sigmoid_cross_entropy_with_logits

 tf.nn.depthwise_conv2d example

q tf.nn.conv3d example

Google Autocomplete

1 2 3 4 5 6 7	

APIComp* (Pattern Matching)

18

*: not designed for comparable API methods extraction; not directly comparable

https://www.telusinternational.com/insights/ai-data/article/the-essential-guide-to-entity-extraction

Evaluation

https://www.telusinternational.com/insights/ai-data/article/the-essential-guide-to-entity-extractio

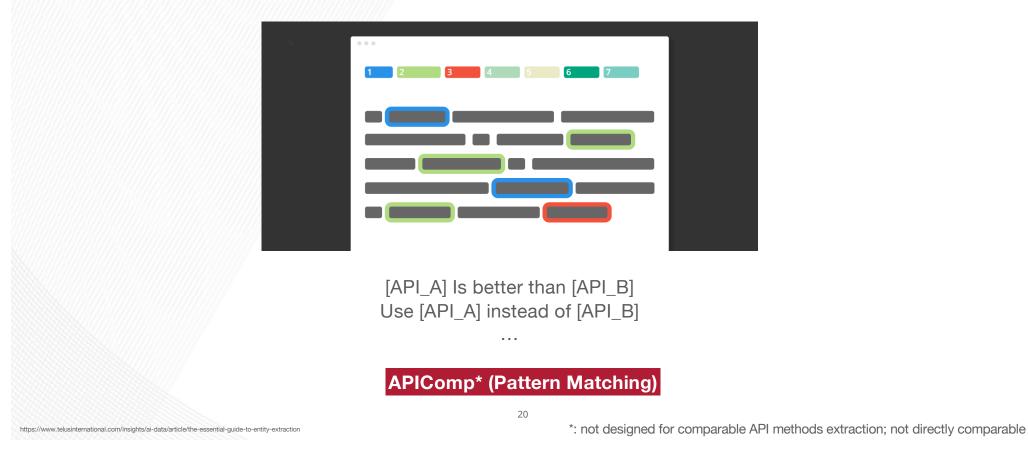
Comparison with existing information source and baselines

Q tf.nn.sigmoid_cross_entropy_with_logits vs

tf.losses.sigmoid_cross_entropy vs
 tf.nn.sigmoid_cross_entropy_with_logits

- Q tf.nn.depthwise_conv2d example
- Q tf.nn.conv3d example

Google Autocomplete


19

*: not designed for comparable API methods extraction; not directly comparable

X

Evaluation

Comparison with existing information source and baselines

Evaluation

https://www.telusinternational.com/insights/ai-data/article/the-essential-guide-to-entity-extraction

Out of 66 comparable API method pairs in test set,

	Relation Candidate tf.nn.softmax, tf.sigmoid			
	sent_0 sent_1			
	sent_2			
777.	↓			
		5	5%	BERT Embedding
1111		Relation Embedd	ding	Sentence Embedding
	Relation Prediction		Evidence Prediction	
		ł	-	Ļ
	Tr	ue	[sent_0,	, sent_1]
		SOF	REL	

Google Autocomplete

APIComp* (Pattern Matching)

21

*: not designed for comparable API methods extraction; not directly comparable

Evaluation

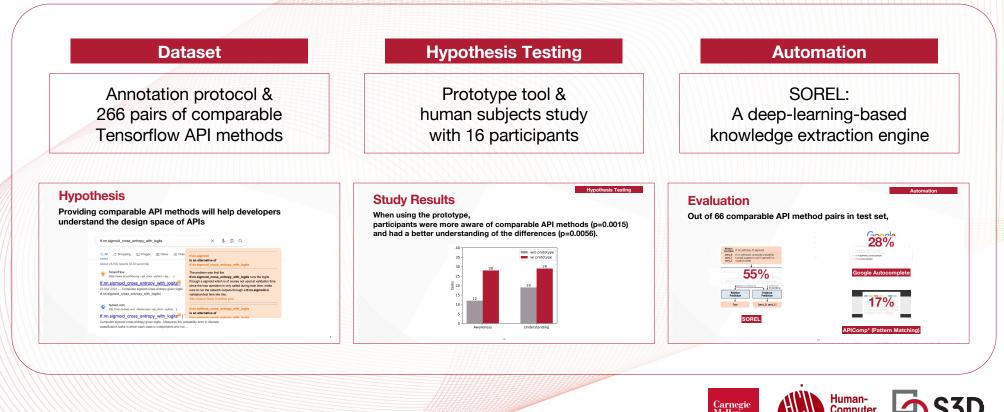
Out of 66 comparable API method pairs in test set,

Relation Candidate tf.r	nn.softmax, tf.sig	moid	
sent_1 I w	nn.softmax() comp ould suggest to us ode>		
	+		
Relation En		%	
	ation Embedding		Sentence Embedding
Relatio Predictio		Evidence Prediction	
t t			
True		[sent_0, sent_1]	

SOREL

0

 In TensorFlow, there are a few comparable methods for 'tf.nn.softmax_cross_entropy_with_logits'. These include:


 'tf.keras.losses.categorical_crossentropy': This function computes the categorical cross-entropy loss between the predicted and true labels. It takes in one-hot encoded labels as input and can be used for multi-class classification problems.
 'tf.keras.losses.sparse_offer the product of multi-class classification problems where the number of classes is high.
 'tf.m.sigmota_cross_entropy_with_logits': This function computes the sigmoid cross-entropy loss between the predicted and true labels. It takes in integer-encoded labels as input and can be used for multi-class classification problems where the number of classes is high.
 'tf.m.sigmota_cross_entropy_with_logits': This function computes the sigmoid cross-entropy loss between the predicted and true labels. It can be used for binary classification problems where there are only two classes.

 All of these functions can be used as a loss function for training a neural network model in

TensorFlow. The choice of which function to use depends on the specific problem being solved and the format of the labels.

A Case Study of Comparable API Methods

Daye Nam (dayen@cs.cmu.edu), Brad Myers, Bogdan Vasilescu, Vincent Hellendoorn

