
Improving API Knowledge Discovery with ML:
A Case Study of Comparable API Methods

Daye Nam, Brad Myers, Bogdan Vasilescu, and Vincent Hellendoorn
Carnegie Mellon University, USA

{dayen, bam, bogdanv, vhellend}@andrew.cmu.edu

Abstract—Developers constantly learn new APIs, but often lack
necessary information from documentation, resorting instead to
popular question-and-answer platforms such as Stack Overflow.
In this paper, we investigate how to use recent machine-learning-
based knowledge extraction techniques to automatically identify
pairs of comparable API methods and the sentences describing
the comparison from Stack Overflow answers. We first built a
prototype that can be stocked with a dataset of comparable API
methods and provides tool-tips to users in search results and
in API documentation. We conducted a user study with this
tool based on a dataset of TensorFlow comparable API methods
spanning 198 hand-annotated facts from Stack Overflow posts.
This study confirmed that providing comparable API methods
can be useful for helping developers understand the design
space of APIs: developers using our tool were significantly more
aware of the comparable API methods and better understood
the differences between them. We then created SOREL, an
comparable API methods knowledge extraction tool trained on
our hand-annotated corpus, which achieves a 71% precision
and 55% recall at discovering our manually extracted facts and
discovers 433 pairs of comparable API methods from thousands
of unseen Stack Overflow posts. This work highlights the merit of
jointly studying programming assistance tools and constructing
machine learning techniques to power them.

I. INTRODUCTION

New libraries and frameworks constantly emerge, each with

their own Application Programming Interfaces (APIs), so

developers must frequently learn new APIs to stay competitive.

Indeed, researchers have concluded that “being able to learn

new technical skills is likely more important [to a software

engineer] than any individual technical skills” [1].

Learning a new API requires many types of knowledge [2]

and there are many documented challenges to obtaining

these [3]. Among them, two key challenges are: finding the

appropriate API types and methods needed for a particular task

(i.e., discoverability [3]–[5]), and identifying all the relevant

information about their execution behavior, usage patterns,

side effects, alternatives, etc. [6]–[10].

Lacking such knowledge can affect developers in at least

two important ways. First, by its very nature [11], software

engineering work involves careful consideration of design

alternatives and often tradeoffs between competing objec-

tives. This happens at all levels, including when choosing,

within a given library or framework, the most appropriate

API types and methods to use while balancing complexity,

runtime performance, memory consumption, but also read-

ability, understandability, amount of boilerplate involved, etc. ,

as there are typically multiple ways to implement the same

23

The argument to must be a
vector of class IDs (i.e. indices of columns in the matrix). This means
that it only works for single-class classification problems.

targets tf.nn.in_top_k(predictions, targets, k)
predictions

If your problem is a single-class problem, then I assume that your tensor is a
one-hot encoding of the true labels for your examples (for example because you
also pass them to an op like . In that
case, you have two options:

y_

tf.nn.softmax_cross_entropy_with_logits()

If the labels were originally stored as integer labels, pass them directly to
 without converting them to one-hot. (Also, consider using

 as your loss function,
because it may be more efficient.)

tf.nn.in_top_k()
tf.nn.sparse_softmax_cross_entropy_with_logits()

If the labels were originally stored in the one-hot format, you can convert them
to integers using :tf.argmax()

If your problem is a single-class problem, then I assume that your tensor is ay_
one-hot encoding of the true labels for your examples (for example because you
also pass them to an op like . tf.nn.softmax_cross_entropy_with_logits()_ _ py_ _ g

(Also, consider using
 as your loss function,tf.nn.sparse_softmax_cross_entropy_with_logits()p _ _ _ py_ _ g

because it may be more efficient.)

Fig. 1: Fragment from a Stack Overflow answer by mrry / CC

BY-SA 3.0 illustrating the tacit crowd knowledge on compa-

rable API methods softmax_cross_entropy_with_logits

and sparse_softmax_cross_entropy_with_logits. We

highlighted the sentences supporting the comparison.

functionality [12]. Thus, one can expect that the harder it is for

developers to access the relevant information to make informed

decisions, the less appropriate their choices would be. Second,

although modern APIs are often large and sophisticated, many

of their types and methods are rarely used in practice, in

part due to insufficient discoverability [13]. In addition to

affecting the aforementioned decisions, this can also slow

down software developers, and, in the long term, lead to

missed opportunities for developers to take advantage of the

most effective technological solutions.

In acquiring API knowledge, developers tend to consult

a variety of sources, as no single one is typically com-

plete. These include the official reference documentation [14],

but also crowd-based knowledge sharing websites like Stack

Overflow (SO), which have long been recognized as usefully

complementary [15]–[20]. In particular, Stack Overflow dis-

cussions are a good source of knowledge on API method

comparisons, which developers ask about quite frequently [6].

Such comparisons can expose developers to more diverse ways

to use an API, thereby improving discoverability, and can

also surface more relevant execution facts about the API, thus

improving learning and programming using the API. Yet, this

information on comparable API methods is generally not easy

to extract and not available on demand, despite its value.

Sometimes, Stack Overflow discussions start with the author

asking explicitly for a comparison between API methods,

e.g., “What is the main difference between StringBuffer

and StringBuilder?” Prior research using natural language

processing (NLP) techniques can identify such posts with high

accuracy when the language is well structured and amenable

to detection using syntactic patterns [6], [21], [22]. However,

comparisons between API methods on Stack Overflow are also

often tacit—they arise organically as part of answers, without

the original poster asking for them explicitly, and the relevant

sentences for the comparison are not clearly identifiable or

even grouped together, but rather can be scattered throughout

a post. Consider the example in Figure 1, where the author of

the answer offers relevant information about the relationship

between two methods from the popular machine learning

TensorFlow API, softmax_cross_entropy_with_logits

and sparse_softmax_cross_entropy_with_logits, un-

prompted by the question. It is sometimes difficult even

for humans to recognize that the answer compares the two

methods, and then to extract the most relevant sentences

informing the comparison (indeed, we ourselves had difficulty

with this; see Section III). Therefore, it is clearly challenging

to design a pattern-matching-based classifier to do the same,

since in addition to recognizing which answers include such

API method comparisons, one would also need to extract and

encode generalizable syntactic patterns for training.

Instead, in this paper we show that (semi-)supervised,

deep-learning based methods recently developed in the NLP

knowledge extraction community [23] can learn to recognize

API method comparisons directly from labeled data, bypassing

the need to manually identify elaborate syntactic patterns.

Moreover, we show that such models can be trained efficiently,

with reasonable effort for data labeling, thus taking the next

step towards the goal of automatically extracting knowledge

from unstructured Stack Overflow posts.

Our work consists of three main parts. First, we develop

an annotation protocol and use it to compile a dataset
of 266 pairs of comparable API methods identified in a

statistically representative sample of Stack Overflow answer

posts discussing the TensorFlow API. As part of our annotation

effort, we also label the sentences within a post that are most

relevant in support of the comparison.

Second, we design and run a human subjects study with 16
participants completing a series of tasks in two experimen-
tal conditions, viz., with and without access to a custom-built

browser plugin that augments the TensorFlow API reference

documentation with the information on comparable API meth-

ods from our labeled dataset. We analyze both quantitative and

qualitative data from the human study, showing, among other

things, the extent to which having access to such information

can help with understanding the API design space given task

requirements, and what requirements participants have for

such a tool.

Third, informed by our annotation effort and human subjects

study, we develop and evaluate SOREL (Stack Overflow

RELation extractor), a deep-learning-based knowledge ex-
traction engine. SOREL identifies pairs of comparable API

methods and explanations of their relationship from unseen

Stack Overflow answers by learning and extrapolating from

our hand-annotated dataset. Our evaluation results show that

SOREL outperforms baselines and pattern-matching-based

approaches, and can discover relevant novel facts compared

to the training data, the official documentation, and simple

Google search. As such, the SOREL approach, which could

be applied analogously to other APIs beside TensorFlow as

long as they are covered by sufficiently many Stack Overflow

discussions, can be useful to API designers and tool builders

looking to improve API documentation and learning.

II. RELATED WORK

Crowd-based knowledge in general, and question & answer

websites like Stack Overflow in particular, have long been an

indispensable resource to software developers and the focus

of much research attention. There is a rich literature studying

Stack Overflow to understand what challenges developers face

in practice, e.g., [6], [17], [19], [24], [25], helping to curate and

navigate the relatively unstructured Stack Overflow content,

e.g., [8], [26]–[31], and extracting knowledge from Stack

Overflow to augment more traditional forms of documentation,

e.g., [9], [15], [16], [18], [20]; researchers have also been

developing tools to more closely integrate such knowledge into

the development workflow, e.g., [18], [32]–[34].

In this context, our work relates to augmenting API doc-

umentation with knowledge extracted from Stack Overflow.

Many types of knowledge have been in focus, including com-

mon use and misuse patterns [8], [9], [34], [35], caveats [16],

[36], [37], opinions on different quality attributes (e.g., usabil-

ity) [29], [38]–[41], or more generally any Stack Overflow

posts discussing some given API methods, such as those

invoked in the developer’s local IDE context [42]. Separately,

there have also been efforts to automatically summarize Stack

Overflow posts [27]–[29], [38], [43]–[46] to make it easier for

readers to find relevant information.

At the intersection of the previous two directions and

closest to our work, there have been a few notable efforts

to extract the most relevant individual sentences containing

particular insights about a given API type [16], and even to

identify comparable technologies, including libraries and API

methods, and extract the relevant supporting sentences for the

comparison [21], [22], [47]. What all these approaches have in

common is a need to define syntactic patterns (heuristics) both

for the relation extraction sub-task (i.e., finding the comparable

API methods) as well as the supporting sentence extraction

sub-task (i.e., finding the most relevant sentences for the

comparison). While they have all been shown to be accurate on

their respective benchmarks, fundamentally, approaches like

these have inherently limited recall because of the manual

annotation and analytical effort required to discover all the

relevant and generalizable linguistic patterns.

In contrast, our work shows that comparable API methods

and the supporting evidence for the comparison can be iden-

tified with similar or higher accuracy directly from examples
(see Section VI-D for the evaluation results comparing our

approach to the relevant prior work baselines). Our key idea

is to build our approach not on linguistic patterns but rather

on using (semi-)supervised learning methods, the other class

of techniques to extract relational facts from raw text [48].1

Currently these models are typically deep neural networks,

trained to classify the presence or absence (and type) of a

relation between two entities in a document [51], as well

to predict the (smallest set of) sentence(s) or phrases that

support the validity of an extracted relation. Most state-of-

the-art relation extraction tools use such deep learners, often

achieving high precision given sufficient training data. Driven

by this success, recent research has expanded the application

of these methods, both in terms of scale [52] (from sentence

to document-level relational extraction) as well as the type of

features extracted, such as learning to differentiate between

(many) types of entities and relations [23], [53]. Compared to

pattern-based methods, neural models tend to need substan-

tially more labeled training data, which makes it harder to

apply them to new environments such as ours. As a solution,

researchers commonly use models that were pre-trained on

large, existing datasets [54], [55], and fine-tune them with with

relatively few training samples [56], [57] for new domains.

In this work, we fine-tune BERT [58], a large pre-trained

model, for comparable API methods extraction and show the

effectiveness of this strategy through the evaluation of SOREL.

Our work can also be viewed as related to the API migration

literature [10], [59]–[64]. Typically, such research facilitates

the process of migrating code from one language to another

(e.g., Java to C# [59]), one library or framework to another

(e.g., PyTorch to TensorFlow [64]), or one version of an API

to another (e.g., TensorFlow 1.x to TensorFlow 2 [65]). As

such, the typical goal is to find (and, if possible, automatically

migrate to) the semantically equivalent implementation of

some source code into a target language, library, framework,

or version. Our goal in this paper is broader in some sense

and narrower in others—broader in that we are interested

in comparable but not necessarily semantically equivalent

API methods, together with an explanation on how they are

related; and narrower in that we only evaluate our technique

on API methods from the same library, rather than across

libraries or languages. Also, the main motivation is different—

to facilitate API discovery and API learning in our case, i.e.,

to help developers make informed choices about API methods,

versus to migrate code automatically. Still, there is some

conceptual overlap between our work and some of the API

migration literature, e.g., [63], [66]–[68], most clearly when it

comes to using contextual information to learn representations

(embeddings) for API elements and computing the distance

between them to identify pairs of comparable / analogous API

methods.

1Relation extraction (RE) is a popular research topic in NLP focused on ex-
tracting relational facts between entities, typically from plain text documents.
For example, in the sentence “Rafael Nadal is a Spanish professional tennis
player,” we may identify two entities (italicized) connected via an Occupation
relation. Sentences may have more than one such relation, or entities that are
not used in any. It is generally important that the text support the relation.
The types of facts derived through RE can be used to create large-scale
ontologies or knowledge graphs [49] based on large volumes of text (e.g.,
all of Wikipedia), question answering [50], and many other tasks.

TABLE I: Summary statistics for our annotated data.

Variable Count

Annotated SO TensorFlow answers 587
SO TensorFlow answers with comparable API methods 198
Identified comparable TensorFlow API pairs 266
Unique TensorFlow methods mentioned in the annotated answers 642
Unique TensorFlow methods with comparable API methods 279
Sentences in the answers 4,298
Supporting sentences for the comparable API methods 737

III. A BENCHMARK OF COMPARABLE API METHODS

Before we test the benefits of providing comparable API

methods (Section IV) and automate the extraction (Sec-

tion VI), we first create a benchmark of pairs of compara-

ble API methods, including supporting sentences from Stack

Overflow. In particular, we focus on the popular TensorFlow

machine learning package (45,996 questions; 33,460 answers

with at 1+ votes). However, our approach is not fundamentally

limited to TensorFlow and could be applied analogously to any

other API with available crowd-based knowledge.

Preprocessing. We started from the 33,460 TensorFlow-

tagged answers with a score of 1 or higher returned by the

Stack Exchange Data Explorer2 as a pool of answers from

which to extract comparable API methods. To increase the

chance of finding comparison relations, we then selected only

the 2,014 answers containing at least two TensorFlow API

methods, as defined in the official list of 6,755 TensorFlow

symbols.3 Next, we randomly sampled 600 answers (98%

confidence level with 4% margin of error) from this set for

manual analysis. Table I lists basic statistics for our sample,

after filtering out 13 of the 600 answers (∼ 2%) that were

longer than 512 words, i.e., more than our deep-learning model

can handle efficiently.4

Annotation Protocol. Next we developed a labeling protocol

to extract, for every Stack Overflow answer in our sample, a)

the pairs of comparable API methods mentioned in the answer;

b) for every pair, a list of the most relevant sentences from the

answer, describing how the methods are related. For example,

given the Stack Overflow answer in Figure 1, we annotate:

• API 1: softmax_cross_entropy_with_logits,

• API 2: sparse_softmax_cross_entropy_with_logits,

• Supporting evidence / summary: [sent 2, sent 5].5

As discussed in Section I, creating such annotations is

both time-consuming and difficult: relations manifest in a

diversity of ways and are often not explicit or well structured,

but inconsistencies in labeling risk wreaking havoc on any

downstream learner when using so little data. To ensure that

our annotations were consistent, replicable, and generalizable,

we created a detailed annotation protocol, refined through

several pilot phases. The final protocol (see our replication

2https://data.stackexchange.com/ accessed Oct 19, 2020.
3https://www.tensorflow.org/api docs/python/tf/all symbols
4Only 3 of the 13 (0.5% of the sample) contained comparable API methods.
5Our sentence indexes start with 0.

package) contains annotation steps, the definition of the rela-

tion, examples, and notes about edge cases.

To increase validity, two authors annotated each set of doc-

uments separately, measured their inter-annotator agreement

(IAA), discussed disagreements, and updated the instructions.

We used the free-response kappa IAA metric [69], as the

more traditional Cohen’s Kappa requires all observations to

be enumerated, whereas in our case only positive instances

(i.e., relations between two entities and supporting evidence

for each relation) are noted, not negative ones (e.g., pairs of

entities not having any relation and sentences not supporting

relations). Arguably, all pairs of entities without relations could

be considered as negatives, but this number is often vast,

growing quadratically with the number of terms (themselves

not truly bounded, as annotators are allowed to add new

entities), and would thus yield near-perfect agreements almost

by definition. Free-response kappa does not depend on the

number of negative instances. The IAA score for the first round

of separate annotations (23 documents) was 0.30, and it rose

to 0.82 in the second round (38 documents), after resolving

disagreements and refining the protocol. As values over 0.8

are generally regarded as good agreement, both by the free-

response kappa proponents [69] and the interpretation guide-

line for Cohen’s kappa [70], we considered the instructions

adequate at that point. After this, a single author annotated the

remaining documents alone following the final instructions.

Resulting Dataset. Table I summarizes basic statistics for

the resulting dataset: the 198 answers with comparable API

methods contained around three TensorFlow methods each;

around one tenth of all TensorFlow symbols were mentioned

as part of any comparison; around one-third of posts contained

(typically several) related pairs, which are best described with

ca. three sentences on average.

IV. USER STUDY

Next we conducted an IRB-approved human subjects study

to investigate how providing developers with (1) a list of

comparable API methods and (2) for each pair, a textual de-

scription of the comparison can assist developers in using new

APIs more effectively. We hypothesize that such information

will help developers not only discover more of an API, but

also understand the API better, such that they can make

more informed decisions about which methods are applicable

to their task or which are preferable given alternatives.

To test these hypotheses, we first built a Chrome browser

extension (Figure 2) that displays the information on com-

parable API methods we collected during our previous an-

notation effort. We deliberately chose a tooltip design to

reduce information overload (tooltips only show contents when

users trigger them), and to make the crowd-based information

easily distinguishable from the official documentation (Stack

Overflow posts can more easily become outdated [8], [71]).

The tooltip is available on any webpage, including the official

API documentation, Google search result pages, and Stack

Overflow. We then ran a study that involves participants

completing a set of tasks in two conditions, with and without

Fig. 2: Overview of our browser plugin: (1) When comparable

API methods exist in our labeled dataset, the extension inserts

a “vs” icon. The user can hover over it to activate the scrollable

tooltip, which displays (2) the pair(s) of comparable API

methods, each with links to their reference pages; (3) the

relevant sentences for the comparison; (4) a link to the Stack

Overflow answer where the sentences were extracted from.

Fig. 3: Example of a task presented to participants.

access to the tooltip extension, and collected both quantitative

and qualitative data on task performance and tool use.

A. Study Design

1) Participants: After advertising our study broadly inside

the university community (Slack channels, posted flyers in

Computer Science buildings, and personal contacts), we re-

cruited 12 participants (6 men, 6 women) having a general un-

derstanding of machine learning (ML), who could understand

the task requirements (9 PhD and 3 MS students, all in ML-

relevant fields). We further recruited 4 participants (all men, 1

research scientist, 1 ML lead, 2 MS students) from outside our

university after advertising our study on Twitter. To determine

if participants were eligible, we administered a screening

survey to collect their self-reported level of ML expertise and

their main ML framework. To minimize the possibility of the

participants knowing solutions to our tasks without needing

to search, we specifically looked for participants who had not

used TensorFlow for more than 6 months. We compensated

each participant with a $15 Amazon Gift card.

2) Tasks: We designed a diverse set of eight ML-related

programming tasks that mimic real-world TensorFlow use,

ranging from tensor manipulation to image processing. For

each task, participants were given the requirements as a

short natural language description, an example input–output

pair, and some starter code, and were asked to complete the

implementation using appropriate TensorFlow API methods

(see Figure 3 for an example and our replication package for

the complete list). We intentionally designed the tasks to have

more than one acceptable solution (involving different Tensor-

Flow API methods), so we could better test the participants’

understanding of all possible options.

3) Experimental Design: We chose a within-subjects de-

sign, where each participant was assigned four of the possible

eight tasks (to keep the participation effort manageable),

two with our browser plugin enabled (treatment) and two

with it disabled (control). We used the Youden square [72]

(incomplete Latin square) procedure to counterbalance the

tasks and order in which they are presented to participants,

to prevent carryover effects. Control (plugin disabled) and

treatment (plugin enabled) were randomly assigned. Overall,

each of the possible eight tasks was used four times in the

treatment condition and four times in the control condition.

4) Procedure: We conducted the study via a video confer-

encing tool, with each session taking about 60 minutes. At

the beginning of the study, we asked participants to install

the browser plugin, share their screen, and think aloud while

completing the tasks. Before their first task in the treatment

condition, we introduced the plugin briefly and showed the

participants a short demo of how it worked. We also informed

participants that there could be multiple solutions to a task,

and asked them to make deliberate choices. Participants were

free to use or read any web pages. The experimenter logged

their web search queries and the pages they visited.

To complete each task, we asked participants for their

chosen API method names (but not to run any code). We

then asked a few interview questions to understand their prior

knowledge with the task and whether they understood the

different options to make an informed decision, i.e., to list

the API methods they considered and briefly describe the dif-

ferences between them. At the end of the study we conducted a

general interview eliciting participants’ impressions of using

the plugin and the usefulness of having the information on

comparable API methods in completing the tasks. See our

replication package for interview protocols.

B. Analysis

1) Data Collection: For qualitative data, we transcribed

the interview parts of the video recordings. For quantitative

data, we computed six outcome variables: (1) task completion

time (in seconds); (2) number of search queries; (3) number

of web pages visited; (4) correctness of the participant’s

solution; (5) the participant’s awareness of comparable API

methods in that context; and (6) their understanding of

the differences between the comparable API methods. We

considered a participant’s answer to be correct if their solution

matched our ideal solution, which we determined based on

our expert knowledge of the tasks. Note that the tasks were

purposefully designed to have multiple potential solutions,

with varying implications and trade-offs, so “incorrect” so-

lutions may not necessarily be “bad” solutions. We discuss

this further in Section IV-C. Awareness and understanding

were measured by labeling the post-task interviews, where

we asked participants to discuss the difference between the

multiple solutions. We rated participants’ awareness as 0 if

the participant answered that they did not know other relevant

API methods or admitted that they guessed the difference, and

1 if they could list comparable methods in the given context.

Understanding was rated as 0 if the participant appeared not

to have a clear understanding of the differences or guessed

based on method names, and 1 if they could describe at least

one valid difference between the two methods. To account for

a possible confounding factor we also rated each participant’s

prior knowledge of the task based on the interview responses,

on a scale ranging from 0 (has no experience) to 3 (recalls the

method name without search).

2) Analysis: To compare the six outcomes between tasks

completed in the treatment and control conditions we esti-

mated six mixed-effects multivariate regression models (one

per outcome variables), with prior knowledge and the con-
dition (treatment vs control) as fixed effects, and random

intercepts for task and participant to account for variation

in task difficulty and participant ability. See Appendix for

summaries of the estimated regressions.

For the qualitative analysis, we first annotated the transcripts

with the participant events (e.g., “opened [page url]”), and

two authors open coded two transcripts separately [73], then

met to discuss and refine the code book. The first author

then coded all remaining transcripts, synthesized the codes,

and identified emerging themes. We coded selectively on how

participants interacted with the tooltip, whether and how they

used the information from the tooltip as part of their answers

to the tasks (especially the summary sentences extracted

from Stack Overflow answers), how they used web search

outside of using the tooltip, characteristics of the instances

when the information provided by the tooltip seemed less

relevant, general impressions on the value of having access

to information on comparable API methods, and requirements

for search assistance tools such as our browser plugin.

C. Results

None of our models for time, queries, or pages shows

a statistically significant effect for condition at α = 0.05.

Thus, we do not find sufficient quantitative evidence to
conclude that having access to information on comparable
API methods has a significant impact on task completion
times or web search queries. However, it is possible that our

tasks were insufficiently complex6 to uncover such differences

between conditions with statistical confidence.

We also do not find statistical evidence that presenting
comparable API methods assists developers in selecting
what we consider as the ideal API methods for a given task:

Although participants in the treatment condition solved the

task correctly slightly more often than in the control (average

score of 0.75 vs 0.66), the correctness model does not show

a statistically significant effect for condition at α = 0.05.

6E.g., on average users made 1.3 (treatment) to 1.4 web searches per task.

However, we reiterate that our measure of correctness is based

on our expert-determined “ideal solutions” given the efficiency

and design rationale of the API methods, which may not align

with the solutions chosen by participants. From the interviews,

we later discovered that some participants did in fact choose

incorrect solutions (that still met the task requirements) on

purpose, citing factors such as readability or familiarity, even

though these solutions may have been less efficient or more

verbose, e.g., “I chose not to do it because it seems like it’s a

little more complicated, it’s less readable” (P13).

We did find clear evidence of increased awareness (co-

efficient = 3.03, z(59) = 3.18, p = 0.0015) and increased

understanding (coefficient = 2.64, z(64) = 2.77, p = 0.0057)

of the API methods in the treatment (tooltip) condition,

supporting our hypothesis that presenting comparable in-
formation helps developers understand the design space
of API: the odds of being aware of comparable API methods

are about 20 times higher (exp(3.03)) among participants with

access to the tooltip information compared to those without;

similarly, the odds of understanding the differences between

the comparable API methods are about 14 times higher. Many

participants typically discovered the API methods they ended

up submitting as their answers from among the comparable

API methods suggested by the tooltip in the treatment con-

dition. Specifically, we found that in more than half of the

tasks (17 participant-task pairs out of 32), participants newly
discovered the API methods they submitted as their answers,

among the comparable API methods suggested by the tool. In

the remaining cases, participants retrieved their solution from

the Google search results directly without using the tool at

all (2 out of 32), focused more on the Google search results

than what the tool presented (4 out of 32), or forgot to use

the tool (3 out of 32) as they felt the pressure to finish the

tasks on time. Finally, there were participants who did nearly

no searching (6 out of 32) due to their prior experience with

other libraries (e.g., PyTorch). We conclude that information

on comparable API methods can help developers discover and

identify which API methods to use.

From the qualitative analysis one common theme was also

that the tooltip information on comparable API methods
was often novel and welcome. Almost all interviews ap-

preciated having the list of comparable API methods, both

for discoverability reasons (e.g., “[otherwise] it would have
been pretty hard for me to have actually found the correct
documentation.”–P16) as well as usability reasons (e.g., “The
tool allowed me to explore more methods more easily in the
same page without retyping the search keyword.”–P1). A few

participants mentioned that such a tool could help close the

“lexical gap” between search queries and web documents, e.g.,

“Sometimes, I’m not-so-clear about what I’m looking for”

(P12).

We also found that the information on comparable API
methods was often less accessible outside the tooltip, i.e.,

the comparable API methods identified from Stack Overflow

were sometimes not mentioned at all among the top web search

results, and the official API documentation typically did not

have “functional” links between the relevant API methods. A

notable exception was that the reference documentation page’s

navigation bar lists all TensorFlow methods in alphabetical

order, and the relevant comparable API methods for one task

were close together in this list since they had similar names,

enabling a participant to identify the second method easily.

Many participants expressed that displaying less relevant
comparable API methods did not reduce the usefulness of
the tool: out of 14 participants who discussed false positives

during the interview, 9 expressed that they are okay with

having some less relevant API methods in the tool results

if there are also good ones among them, whereas only 3

mentioned that false positives hindered their ability to fully

use the tool. Participants mentioned that going through the

comparable API methods was still useful even when they are

less relevant to their tasks because “this list is still smaller
[than the number of pages they need to check in general]. It
is in some sense narrowing down the search, which is helpful”
(P11). P6 even took them as a benefit, saying that “If we
got exposed to potential comparable API methods out there
[during search], there will be more chances to explore our uses
in methods or contents in the package [in future uses].” Other

participants mentioned that the tool was less useful when too

many comparable API methods are shown, but interviewees

typically appreciated the tooltip design “because it’s really
not intrusive” (P5).

The summary sentences displayed below each pair of
comparable API methods were useful when considered,
but were used by fewer participants. When considered,

the summary sentences seemed to be the way participants

learned about the differences between the comparable API

methods. These participants did not typically make additional

web search queries to understand the differences after reading

the summaries, and were able to clearly explain the rationale

behind their choice of API method in the interview. As one

interviewee put it, “I think [the summary] was abstracted quite
well. So even though I didn’t go inside the Stack Overflow
pages to see the detailed comparison, I could understand
what’s the gist of the differences.” (P6).

Among participants who saw less use for the summaries,

some indicated they prefer “looking for code snippets [with-
out] reading the text” (P10), others that they prefer to have

all the context, not just the summary (e.g., “I found it a lot
nicer to click towards the original documentation.”–P16), and

still others expressed skepticism towards the quality of crowd-

based information (e.g., “I don’t really trust the text in the tools
much because maybe it came from Stack Overflow.”–P13).

D. Threats to Validity

We only studied tasks in machine learning, requiring Ten-

sorFlow API methods, which may not be representative of

other API learning scenarios. Furthermore, our tasks don’t

address all aspects of ML programming; topics related to

scalability (e.g., loading a large dataset) and performance (e.g.,

optimizing memory usage) are notably missing. The value

of providing comparable API methods may differ in more

complex tasks. For example, if a developer needs to meet non-

functional requirements, they might care more about the trade-

offs between the API methods. Future work should consider

observing participants beyond our study settings, in real-world

tasks with more diverse domains and APIs.

The observations gathered through interviews only represent

the experience of the participants, most of whom were grad-

uate students conducting ML/NLP research. The usefulness

of information on comparable API methods and tools similar

to ours may be different for other user groups, e.g., profes-

sional software engineers. However, we believe that many of

our findings can be relevant to software engineers, as most

(12/16) of the participants have experience working at large

corporations as (ML) software engineers or research scientists.

V. IMPLICATIONS FOR AUTOMATION

Overall, our annotation effort (Section III) and user study

(Section IV) showed that while developers generally find

comparable API methods and the summaries useful in un-

derstanding the design space of APIs, such information is not

easily available to the users and requires significant effort to

manually collect. To support more use cases in TensorFlow

(and ultimately, other libraries), we suggest using ML-based

techniques to increase the efficiency compared to fully manual

annotation. We expect that such techniques:

• should maximize the utility of small hand-annotated
datasets. Extracting comparable API methods with expla-

nations requires significant manual effort. Therefore, we

recommend utilizing fine-tuning on top of models that are

pre-trained (e.g., BERT [58]) on large, existing datasets

(e.g., Wikipedia, Stack Overflow).

• should prioritize extracting comparable API methods over
summaries. We observed that most of the participants used

the provided comparable API methods to discover new API

methods, or to navigate through the documentation, but only

a few seemed to benefit from the summaries.

• may prioritize improving recall over precision when ex-
tracting pairs of comparable API methods, once it achieves

a reasonable precision score. We observed that many of

the participants were okay with having comparable API

methods that might be less relevant to their tasks among

the tooltip results, as long as the list contains at least some

useful information.

• may limit themselves to extractive over abstractive summa-
rization. Although it is likely more useful if one could gen-
erate a concise but informative summary (i.e., abstractive
summarization), creating training samples for this purpose

would substantially increase data annotation cost compared

to an extractive summarization model, which only selects

key pre-existing sentences. We note that excluding irrelevant

sentences (for conciseness) is just as important as identifying

relevant sentences, as Stack Overflow answers often cover

multiple topics. Therefore, a model should evenly balance

both precision and recall in extractive summarization.

VI. SOREL

In the previous section, we provided evidence for the benefit

of knowledge extraction, and in particular presenting compara-

ble API methods, to support developers’ understanding of the

API design space. We also derived requirements for an ML

model to help automate this knowledge extraction process.

In this section we present SOREL (Stack Overflow RELation

extractor), an ML model that collects comparable API methods

and relevant supporting natural language sentences from Stack

Overflow answers.

To discover new facts, represented as triplets (entity 1,

relation, entity 2) in unstructured text, one typically follows

a two-pronged knowledge extraction approach. First, Named

Entity Recognition (NER) is used to locate and classify

entities. Relation Extraction (RE) then identifies relations of

various kinds (including “no relation”) between entity pairs.

In general, both problems are hard and the focus of active

research in NLP, e.g., [74], [75]. In our work, since we are

extracting only API method entities, we found that the NER

step can be done accurately using pattern matching based on

the full list of TensorFlow API symbols,7 therefore we focused

on the RE problem instead. In the RE step, we aim to identify

the comparative relation “is comparable to” in an input Stack

Overflow answer with more than one TensorFlow API call.

To make the identified relations more useful, we also identify

one or more sentences from the same answer, that offer the

evidence supporting each identified relation. This provides a

type of (extractive) summary for each relation. Therefore, our

task is divided into two sub-problems:

• Comparative-relation extraction (RE) between entities.

• Supporting-evidence prediction (SEP).

A. Model Architecture

Figure 4 shows the architecture of our model, which is

inspired by Yao et al.’s DocRED [52]. The model consists

of four main components:8

BERT. We use a language representation model called

BERT (Bidirectional Encoder Representations from Trans-

formers) [58] to represent Stack Overflow answers. Due to

its bidirectional nature, it provides deeper contextual informa-

tion, which can help with document-level relation extraction.

We used the pre-trained BERT model and a tokenizer from

the original BERT paper provided via huggingface.910 Due

to the small amount of training data, we kept the BERT

model weights frozen during the training, fine-tuning just the

classification layers – a common approach when using small

fine-tuning datasets [56], [57].

Relation Encoder generates representations for a pair of

entities. Embeddings of the same entity which occur multiple

7In 50 randomly selected answers tagged with TensorFlow, the pattern
matching approach missed just 12 out of 133 mentions of TensorFlow
methods, achieving 91% recall and 100% precision.

8For ablations of the model design, see Table II.
9https://huggingface.co/bert-base-uncased
10We also considered BertOverflow [74], which was pre-trained with a

Stack Overflow corpus, but found the original BERT to work better.

7

Fig. 4: The architecture of SOREL, which learns to infer the

comparison relation and the supporting evidence.

times are averaged across the document, to allow sharing

their learned representation across occurrences. The relation

encoder combines two entities’ averaged BERT embeddings

using a bilinear function, which captures the mutual agreement

between their respective representations. Similar to Yao et
al., we concatenated each entity representation with a rel-

ative distance embedding before passing it to the bilinear

function [52]. The relative distance embedding represents the

relative distances of the first mentions of each unique pair of

entities in the document, informing the model of how closely

together the two are mentioned. See [52] for details.

Sentence Encoder generates contextualized representations

for each sentence in the input document. We use a two-

layer bidirectional LSTM (BiLSTM) model to represent each

token in the input document. BiLSTMs combine two LSTMs,

one traversing the sequence forward and one backwards, to

allow integrating information from the context on both sides

of each token. This helps the model capture broader context

around each sentence specifically for the sentence prediction

task. An alternative would be to fine-tune the underlying

BERT model, but we found this to be ineffective due to

the small size of our training data (Table II). A single-layer,

low-dimensional BiLSTM contains comparatively far fewer

parameters to calibrate. To obtain a sentence embedding, we

use the BiLSTM’s output representation of the first token of

sentence, which is the same ([cls]) token that BERT models

use to extract sentence embeddings.

B. Model Training

As RE and SEP are highly connected tasks, we train SOREL

RE and SEP objectives simultaneously, by combining the two

losses: loss = α ∗ re loss + sep loss. We adjusted the

hyperparameter α experimentally so the two losses converge

at a similar rate, as minimizing the sep loss involves more

trainable parameters and thus typically takes more iterations.

TABLE II: Overall performance on each subtask, and ablations

(on test set) of the model components and of the training set

size (%).

RE SEP

A P R F1 A P R F1

Train 93.7 85.6 76.6 83.7 80.0 73.2 65.5 71.5
Val 89.3 64.3 89.6 67.9 76.2 65.9 61.6 64.7

Test 84.5 71.3 55.0 67.3 77.6 75.5 47.8 67.6

SOREL 84.5 71.3 55.0 67.3 77.6 75.5 47.8 67.6
- BERT 80.1 56.5 59.3 57.0 61.8 39.7 29.8 37.2

- BiLSTM 83.5 67.2 55.7 64.6 70.4 58.4 36.7 52.2
+ Finetune 80.9 58.6 58.6 58.6 69.8 57.3 34.0 50.4

All data (470) 84.5 71.3 55.0 67.3 77.6 75.5 47.8 67.6
2/3rd (315) 85.8 77.6 54.3 71.4 75.8 64.9 58.4 63.5
1/3rd (155) 84.5 73.0 52.1 67.6 73.9 81.1 27.6 58.5
1/10th (45) 78.8 53.3 64.3 55.2 65.9 45.9 17.9 35.0

TABLE III: Recall comparison with Google Autocomplete,

Google’s Top-5 results, TensorFlow documentation, heuristics,

DiffTech [22], and APIComp [21]), on test set (%) after

excluding deprecated API methods.

SOREL Auto Top-5 Doc Heur. DiffTech APIComp

RE 55.3 28.0 18.2 29.2 30.3 33.3 16.7
SEP 55.2 - - - 48.1 5.7 26.4

We randomly split our annotated dataset from Section III

into a training and test set in a 4:1 ratio. We tuned the model

hyper-parameters through 5-fold cross validation on the train-

ing portion (470 samples). In selecting hyper-parameters, when

there are two settings with very similar overall performance,

we selected the one that yielded a lower RE loss, under

the premise that better comparable API methods extraction

benefits a broader group of developers than having a good

summary of the differences (as evidenced in Section IV-C).

To maximize the utility of our limited training data, we

trained with a relatively low learning rate (1e-5) and frequently

checked the held-out results to ensure that we captured the

best performing model. We also added input dropout, which

randomly omits 40% of tokens from the input at training

time [76]. This has the effect of preventing the model from

overfitting on known inputs by artificially creating many

versions of the same inputs, a form of data augmentation.

C. Evaluations with Test Data and Ablations

We now evaluate how well SOREL can extract knowledge

on comparable API methods from Stack Overflow answers,

focusing first on the test subset of our manually annotated

data. Table II summarizes the train / (average) validation / test

performance scores and ablations of the model components

and the training set size. The final model achieves around

67% F1 score and around 80% accuracy on both tasks (RE

and SEP) on the test set, which is a reasonable return given

the small amount of training data.

Training custom word embedding instead of using BERT

drops performance significantly on both RE and SEP. This

confirms the benefit of adopting a large pre-trained language

model when only a little training data is available. Not using a

BiLSTM for SEP also reduced the performance significantly,

which shows that SEP relies on this component to capture the

global context beyond the initial representations offered by

BERT. An alternative option, fine-tuning BERT along with our

other parameters, decreased performance, as we might expect

given the small size of the dataset.

Models show fairly steady gains in performance as we train

on a progressively larger subset of the training data, starting

from just 45 samples. While RE performance fairly quickly

saturates, SEP performance progressively improves with more

data. Still, we are content that a corpus of our size is right

around the smallest size (and thus requires the least annotator

overhead) where our model performance is adequately capable

of generalizing, achieving balanced F1 results for RE and SEP

and accuracy around 80% on each.

D. Comparison with Baselines and Prior Work

For the RE sub-task, we compare SOREL with: (1) general-

purpose web search; (2) the TensorFlow reference documenta-

tion; (3) a simple heuristic approach; and (4) an adaptation of

the most closely related prior work approach, DiffTech [22],

which can identify pairs of similar technologies (e.g., golang
and javascript for programming language) from Stack Over-

flow, a task which is conceptually similar to ours, albeit at a

higher level of abstraction. See Table III for a summary of the

results.

1) [RE] SOREL vs Google Search: Developers commonly

find information on comparable API methods using a generic

search engine. Given a pair of fully-qualified comparable API

methods (A, B) in our test set, we enter the Google search

query “A” and record whether B is mentioned anywhere within

the top-5 Google search result landing pages; we then repeat

the search in reverse, starting from “B”. The recall measure we

report for Google Search for the pair (A, B) is the average of

the two. In addition, we separately inspect the Google search

autocomplete suggestions for the query prefixes “A” and “A

vs” (similarly “B” and “B vs”) and check for the presence

of B (A) among the suggestions. SOREL identified roughly

twice as many relations as Google search in both cases.

2) [RE] SOREL vs Reference Documentation: Similarly,

given a pair (A, B) we inspect the API reference documen-

tation page for A and record whether it contains a link to

B and vice versa, excluding all pairs involving a deprecated

API call, which have no documentation page. Again, SOREL

identified roughly twice as many relations as were mentioned

in the official documentation.

3) [RE] SOREL vs Heuristic: Next, we compare SOREL

to a simple, intuitive heuristic: if a Stack Overflow answer

mentions exactly two API methods, consider those two to

be comparable and record the pair. Across the 66 ground

truth comparable pairs in test set, there are 52 answers with

exactly two API methods mentioned, so one could hope to

extract 52 comparable pairs. However, many of these pairs

were not actually comparable (only 20 pairs were), so this

simple heuristic is quite noisy, corresponding to 30.30% recall

and 38.46% precision. Recall the example in Figure 1 –

comparable pairs are often found within answers mentioning

more than two API methods; the two API methods mentioned

in answers with exactly two methods are often not comparable.

4) [RE] SOREL vs Word2Vec: We compare SOREL to

DiffTech [22], the prior work closest to ours. DiffTech col-

lects pairs of similar technologies (e.g., libraries, frameworks,

programming languages) based on the intuition that frequently

co-occurring Stack Overflow tags corresponding to differ-

ent technologies may share a similar meaning. Specifically,

DiffTech embeds tags with a Word2Vec [77] model trained

on a corpus of tag sentences, and identifies pairs of tags as

related when their embeddings have a cosine similarity greater

than 0.4. While the DiffTech approach is designed to solve a

different problem, the intuition carries over to our context:

API methods may frequently co-occur with others they are

comparable with, even though they rarely have dedicated tags.

Therefore, we trained a Word2Vec model using API methods

from our entire corpus of 33,460 TensorFlow answers and

tested how many of the labeled comparable pairs in our test

set have embeddings more than 0.4 cosine-similar. Only 16

(24%) of the comparable API method pairs in our labeled test

set were among each other’s top-5 nearest neighbors, and 22

(33%) were among the top-20, highlighting that our adaptation

of the approach struggles to match comparable API calls based

on co-occurrence statistics alone.

Next we turn to the SEP sub-task and compare SOREL

to: (5) a heuristic approach; and (6) two approaches based on

linguistic patterns, inspired by related prior work [21], [22].

5) [SEP] SOREL vs Heuristic: Intuitively, one might expect

that given a pair of comparable API methods (A, B), all

the sentences mentioning either A or B can be considered

as supporting evidence. We test this heuristic for the true

positive pairs from the RE step, for a fair comparison. In this

limited setting, assuming the RE step is perfectly accurate, the

heuristic approach performs quite well (Table III), but SOREL

nevertheless manages to improve over it.

6) [SEP] SOREL vs Pattern Matching: Pattern-matching-

based approaches have been used before to extract information

from online documentation, with the two closest predecessors

arguably being the DiffTech [22] approach discussed above

for RE and APIComp [21]. A fundamental difference between

SOREL and such approaches is where human effort is spent

during the “training” process. SOREL requires human annota-

tion effort to label API pairs and supporting sentences as valid

/ relevant or not. Pattern-matching-based approaches require

human effort to identify the linguistic patterns needed to

extract relevant sentences from text. Fundamentally, SOREL’s

type of effort can be expected to scale more easily to new

APIs and sources of documentation, because it requires less

expertise in NLP. Hence, we argue that designing a pattern-

matching-based approach for our task from scratch may not

be preferable. Still, one can ask a pragmatic question – what

if the predefined linguistic patterns from DiffTech [22] and

APIComp [21] generalize well enough to extracting supporting

evidence for comparable API methods from Stack Overflow

without any additional effort? We investigate this next.

For DiffTech [22], the authors identified and validated a

series of linguistic patterns based on sequences of part-of-

speech tags (e.g., “RBR (comparative adverb) JJ (adjective)

IN (preposition)” as in “more efficient than”) for extracting

supporting sentences for the identified pairs of comparable

technologies. Testing these same patterns on the answers in

our sample containing 22 pairs identified by the previous RE

step, we find that out of 70 sentences in 16 answers that

were labeled as supporting evidence, only 4 sentences matched

DiffTech’s exact patterns (5%).

APIComp [21] is designed for a different usage scenario

– to explain, given a pair of API methods, not necessarily

“comparable” per our definition, the relationship between them

using text extracted from reference documentation. APIComp

first extracts sentences describing an API element from official

reference documentation using linguistic patterns, and then

aligns and compares the extracted sentences given an API

knowledge graph. To test whether the same linguistic patterns

carry over to our task, we applied the APIComp patterns to

extract API statements from Stack Overflow answers in our

test set, finding that only 33 out of 125 known supporting

evidence sentences were matched (26.4%), identifying only

11 comparable API pairs out of 66 available (17%).

We conclude that previous pattern-matching-based ap-

proaches are not directly applicable to our task, and that

anyway it may not be preferable to design a custom pattern-

matching-based approach for relevant sentence extraction for

our comparable API methods task. Recall is typically low

because relations can be expressed in a variety of ways, hard

to capture with reliable patterns, and pattern building typically

requires significant amounts of manual effort.

E. Generalization to Larger Dataset

We next turn to our most ambitious target: assessing how

well our model can generalize and rank insights from all

33,460 up-voted answers tagged with TensorFlow. After fil-

tering out posts containing fewer than 2 Tensorflow symbols,

2,014 documents remained. Using our model, we identify

433 pairs of comparable API methods with 744 supporting

evidence sentences. We report two such new (not included in

our training data) relations in Table IV, as an example.

We manually reviewed the top 50 answers as sorted by the

descending probability of both the relation and the supporting

evidence sentences (according to the model’s predictions, mul-

tiplied together). As many unique pairs of API methods were

discovered in multiple Stack Overflow answers, we focused on

relations detected twice or more, which we expect are more

likely to be both accurate as well as relevant to developers.

To compute the accuracy for RE on these, we follow the

same guidelines as in Section III, marking relations correct

when the relation between the two entities was factual and

explicitly represented in the answer. Similarly, for SEP, we

labeled samples correct when the predicted sentences explain

the relation sufficiently without missing sentences. Note that

TABLE IV: A sample of new comparable API methods pairs

and their supporting evidence extracted from Stack Overflow.

API Pair tf.convert_to_tensor, tf.constant
Evidence [SO Answer: 50981199] Each time a tensorflow operation

expects a Tensor input but receives something else, it
tries to convert it with tf.convert_to_tensor, and
if successful, proceeds normally with that output. In case
of a constant like 2, but also np.arrays, lists, tuples, or
virtually any container or (well-formed) hierarchy of con-
tainers, tf.convert_to_tensor will create a Const
operation, just like the one you would create by hand
by calling tf.constant. tf.constant is nonetheless
useful because it allows you, among other things, to name
your constant in the graph and to control its data type (with
name and dtype arguments respectively).

API Pair tf.nn.embedding_lookup, tf.gather
Evidence [SO Answer: 46440226] If params is a single tensor,

the tf.nn.embedding_lookup(params,ids) op-
eration treats ids as the indices of rows in params.
If params is a list of tensors or a partitioned variable,
then ids still correspond to rows in those tensors, but
the partition_strategy (either "div" or "mod")
determines how the ids map to a particular row. Alterna-
tively, you can use the axis argument to tf.gather()
to select columns from U:

SEP is dependent on the results of the RE, the model cannot

predict a correct supporting evidence sentence for a “faulty”

relation or “no relation”. Therefore, we only considered correct

RE predictions when computing scores for SEP.

On these 50 relations extracted from top-scoring answers,

the RE precision is 50% and SEP average accuracy is 77%.11

Importantly, 90% of these correct relations were novel—not

present in the training data. These results highlight that despite

training on a small amount of data, a model like ours can show

its strength when deployed on a very large corpus, where facts

abound and high recall may be less important.

F. Error Analysis

Next we describes the patterns we observed in the mistakes

the model makes. One common type of mistake was false

positives due to lack of explicit topic change. Unlike API

reference documentation pages, Stack Overflow posts often

cover multiple topics in a short document. Therefore, the

model sometimes failed to recognize the abrupt topic change

and predicted a relation assuming that two entities were

discussed in the same context. This error might be mitigated

by preserving the original delineation of paragraphs and code

blocks in the input data, though low textual consistency is a

fundamental issue with Stack Overflow posts [6], [34].

Another common type of false positive is answers describ-

ing sequential use of API methods, such as ones explaining a

code snippet line by line. As many of the labeled comparable

API methods were described in sequence, the model often

made wrong predictions in this case. This confusion is rather

reasonable; when annotating the data, we occasionally found

it challenging to determine whether methods in a pair were

explicitly compared or simply mentioned in sequence.

11As there is no label for this data, we cannot compute other metrics for
RE. For SEP, we averaged the accuracies of each answer.

Finally, code in text was a general issue for both RE and

SEP. Although we filtered out code snippets, many answers

contain code intermixed with their text. Our model may fail

to capture such code’s context and meaning, which results in

some false-positive API method pairs predicted as having a

relation whenever they are simply used together.

G. Threats to Validity

A threat to the external validity of our results is that we

only used TensorFlow answers to build and evaluate our

model. Therefore, our model might not generalize to other ML

libraries such as PyTorch, or other domains such as Cloud or

Graphics. While we do not expect other libraries and domains

(with sufficient programmer interest) to have particularly less

informative Stack Overflow answers, it remains a subject of

future work to adapt our protocol to such use-cases.

We did not compare our model with state-of-the-art

document-level relation extraction models built for general

corpora such as Wikipedia [78], [79]. While we adopt a similar

methodology, our corpus is both much smaller, less structured,

and more domain-specific than the general Wikipedia corpus.

We believe omitting such a comparison is reasonable as

our goal was to explore and demonstrate the feasibility of

exploiting Stack Overflow’s relational insights using machine

learning. As such, we do not claim that our model presents

the best performance for this problem.

VII. DISCUSSION

We showed that providing extracted comparable API meth-

ods can help developers understand the design space of APIs.

We further built SOREL, which using relatively little labeled

data can jointly extract relations and supporting evidence from

new Stack Overflow answers. Next we present implications of

our work for practitioners and researchers in this area.

a) ML-based Knowledge Extraction: To our knowledge,

this is the first application of learning-based relation extraction,

as well as supporting evidence prediction, on Stack Overflow

data. The state-of-the-art knowledge extraction techniques we

use make our pipeline a good fit for extracting structured

knowledge from an environment as unstructured and diverse

as Stack Overflow. A next step may be to annotate a corpus

spanning multiple libraries, such as Pandas and PyTorch,

following our protocol. Besides enabling SOREL for new li-

braries, this might also benefit performance overall: developers

likely use similar patterns when comparing and contrasting

terms from APIs, which could be useful to a model even

when targeting just one API. Our results in Table II suggest

prediction accuracy can yet improve with more data.

b) Reference Documentation: In the control condition

(tooltips disabled) in our study, discoverability issues emerged

due to a lack of “functional links” in the API documentation,

that could only occasionally be retrieved via Google search,

or had similar enough method names to be located nearby

in the method navigation bar. However, when the reference

documentation includes an explicit note about functionally-

related methods, participants were able to discover them quite

easily (see Section IV-C). Our detected comparable API meth-

ods could thus be especially useful for API documentation

writers, to improve API discoverability. While automatically

identified relations require the API to be popular enough on

Stack Overflow and may include false positives or outdated

pairs [8], [71], those well-versed in the API can identify

correct relations in a list of extracted relations with little effort.

This can quickly yield dozens of new functional links to boost

API discoverability.

c) API Knowledge Support Tools: We believe it is worth

developing other types of API knowledge acquisition tools

like our prototype. One finding from our study that we

believe might generalize is related to differences in problem

solving and information foraging strategies between groups

of users (we saw this especially around participant reactions

to the summary sentences), which have also been noted

previously [13], [80], [81]. This suggests that when designing

knowledge support tools for developers, allowing users to

configure the types and depth of information presented to them

(e.g., whether to provide the summary) could be useful.

Another factor to consider is where the tool will be de-

ployed. From the study, we found that the usefulness of our

tool was highly dependent on Google search results, as most

users activated the tooltip while on the Google search page.

Some participants also suggested utilizing search queries so

that they do not see methods that are less relevant to their tasks

from the list (see Section IV-C for details). We believe that

similar constraints (or benefits) will exist for other platforms

(e.g., IDE), and thus, how users will consume the presented

knowledge should be considered when designing the tool.

VIII. CONCLUSION

In this paper, we investigated the usefulness and challenges

of extracting comparable API methods from Stack Overflow

posts. From our user study, we provide evidence that showing

comparable API methods and summaries about their difference

can improve developers’ understanding of the API design

space, and help them select API methods by taking into ac-

count the differences between alternative solutions. We further

showed that an ML-based model can reasonably accurately

extract such knowledge from unstructured SO answers: our

model identifies comparable API methods with a precision of

71% and summaries for these with 75% precision. We hope

that our detailed observations and methodology inform further

research on knowledge extraction in software engineering.

Data Availability. Our replication package, including our

annotated dataset, annotation protocol, user study protocol, and

scripts to replicate the user study, as well as our source code

are available online at DOI 10.5281/zenodo.7570586 [82].

IX. ACKNOWLEDGEMENT

This research was funded in part by the NSF under grant

CCF-2007482. We would like to thank our participants for

their time and input, and our reviewers for their valuable

feedback.

REFERENCES

[1] P. L. Li, A. J. Ko, and J. Zhu, “What makes a great software engineer?”
in International Conference on Software Engineering (ICSE), vol. 1.
IEEE, 2015, pp. 700–710.

[2] K. Thayer, S. E. Chasins, and A. J. Ko, “A theory of robust api knowl-
edge,” ACM Transactions on Computing Education (TOCE), vol. 21,
no. 1, pp. 1–32, 2021.

[3] M. P. Robillard and R. DeLine, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[4] J. Stylos and B. A. Myers, “The implications of method placement on api
learnability,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, 2008, pp. 105–112.

[5] E. Duala-Ekoko and M. P. Robillard, “Using structure-based recommen-
dations to facilitate discoverability in apis,” in European Conference on
Object-oriented Programming. Springer, 2011, pp. 79–104.

[6] M. Liu, X. Peng, A. Marcus, S. Xing, C. Treude, and C. Zhao, “Api-
related developer information needs in stack overflow,” IEEE Transac-
tions on Software Engineering, 2021.

[7] D. Nam, A. Horvath, A. Macvean, B. A. Myers, and B. Vasilescu,
“MARBLE: mining for boilerplate code to identify API usability
problems,” in 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019. IEEE, 2019, pp. 615–627. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00063

[8] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable?: A study of api misuse
on stack overflow,” in International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 886–896.

[9] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun, “Demystify official api
usage directives with crowdsourced api misuse scenarios, erroneous
code examples, and patches,” in International Conference on Software
Engineering (ICSE), 2020, pp. 925–936.

[10] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining API usage mappings for
code migration,” in International Conference on Automated Software
Engineering (ASE), I. Crnkovic, M. Chechik, and P. Grünbacher, Eds.
ACM, 2014, pp. 457–468.

[11] M. Shaw, “Prospects for an engineering discipline of software,” IEEE
Software, vol. 7, no. 6, pp. 15–24, 1990.

[12] M. Meng, S. Steinhardt, and A. Schubert, “Application programming
interface documentation: what do software developers want?” Journal
of Technical Writing and Communication, vol. 48, no. 3, pp. 295–330,
2018.

[13] A. Horvath, S. Grover, S. Dong, E. Zhou, F. Voichick, M. B. Kery,
S. Shinju, D. Nam, M. Nagy, and B. Myers, “The long tail: Under-
standing the discoverability of api functionality,” in IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2019, pp. 157–161.

[14] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
no. 6, pp. 35–39, 2003.

[15] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of api discussions on
stack overflow,” Georgia Institute of Technology, Tech. Rep. GIT-CS-
12-05, 2012.

[16] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in International Conference on Software
Engineering (ICSE). IEEE, 2016, pp. 392–403.

[17] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through
hoops: Why do java developers struggle with cryptography apis?” in
International Conference on Software Engineering (ICSE), 2016, pp.
935–946.

[18] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documen-
tation,” in International Conference on Software Engineering (ICSE),
2014, pp. 643–652.

[19] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How do api changes trigger stack overflow discussions? a
study on the android sdk,” in International Conference on Program
Comprehension (ICPC), 2014, pp. 83–94.

[20] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge gap,”
in International Conference on Automated Software Engineering (ASE).
IEEE, 2018, pp. 293–304.

[21] Y. Liu, M. Liu, X. Peng, C. Treude, Z. Xing, and X. Zhang, “Generating
concept based api element comparison using a knowledge graph,” in
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 834–845.

[22] H. Wang, C. Chen, Z. Xing, and J. Grundy, “Difftech: Differencing
similar technologies from crowd-scale comparison discussions,” IEEE
Transactions on Software Engineering, 2021.

[23] C. Niklaus, M. Cetto, A. Freitas, and S. Handschuh, “A survey on open
information extraction,” in International Conference on Computational
Linguistics (COLING), 2018, pp. 3866–3878.

[24] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[25] R. Abdalkareem, E. Shihab, and J. Rilling, “What do developers use the
crowd for? a study using stack overflow,” IEEE Software, vol. 34, no. 2,
pp. 53–60, 2017.

[26] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec++: An
enhanced tag recommendation system for software information sites,”
Empirical Software Engineering, vol. 23, no. 2, pp. 800–832, 2018.

[27] S. Nadi and C. Treude, “Essential sentences for navigating stack
overflow answers,” in International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2020, pp. 229–239.

[28] B. Kou, Y. Di, M. Chen, and T. Zhang, “Sosum: A dataset of stack over-
flow post summaries,” in International Conference on Mining Software
Repositories (MSR). IEEE, 2022, pp. 247–251.

[29] X. Ren, Z. Xing, X. Xia, G. Li, and J. Sun, “Discovering, explaining
and summarizing controversial discussions in community q&a sites,”
in International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 151–162.

[30] J. Sun, Z. Xing, R. Chu, H. Bai, J. Wang, and X. Peng, “Know-how in
programming tasks: From textual tutorials to task-oriented knowledge
graph,” in International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2019, pp. 257–268.

[31] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “What kind of
questions do developers ask on stack overflow? a comparison of auto-
mated approaches to classify posts into question categories,” Empirical
Software Engineering, vol. 25, no. 3, pp. 2258–2301, 2020.

[32] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow in
the ide,” in International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 1295–1298.

[33] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stack overflow to turn the ide into a self-confident programming
prompter,” in International Conference on Mining Software Repositories
(MSR), 2014, pp. 102–111.

[34] G. Uddin, F. Khomh, and C. K. Roy, “Automatic api usage scenario
documentation from technical q&a sites,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 30, no. 3, pp. 1–45,
2021.

[35] S. Azad, P. C. Rigby, and L. Guerrouj, “Generating api call rules from
version history and stack overflow posts,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 25, no. 4, pp. 1–22, 2017.

[36] J. Li, A. Sun, and Z. Xing, “To do or not to do: Distill crowdsourced
negative caveats to augment api documentation,” Journal of the Asso-
ciation for Information Science and Technology, vol. 69, no. 12, pp.
1460–1475, 2018.

[37] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Improving
api caveats accessibility by mining api caveats knowledge graph,”
in International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2018, pp. 183–193.

[38] G. Uddin and F. Khomh, “Opiner: an opinion search and summarization
engine for apis,” in International Conference on Automated Software
Engineering (ASE), G. Rosu, M. D. Penta, and T. N. Nguyen, Eds.
IEEE, 2017, pp. 978–983.

[39] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-
based mining of opinions in q&a websites,” in International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 548–559.

[40] P. Chatterjee, K. Damevski, and L. Pollock, “Automatic extraction
of opinion-based q&a from online developer chats,” in International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1260–
1272.

[41] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, and M. Lanza,
“Opinion mining for software development: A systematic literature
review,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 3, pp. 1–41, 2022.

[42] R. Rubei, C. Di Sipio, P. T. Nguyen, J. Di Rocco, and D. Di Ruscio,
“Postfinder: Mining stack overflow posts to support software develop-
ers,” Information and Software Technology, vol. 127, p. 106367, 2020.

[43] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: Automated generation
of answer summary to developers’ technical questions,” in International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 706–716.

[44] R. F. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao,
and M. de Almeida Maia, “Recommending comprehensive solutions
for programming tasks by mining crowd knowledge,” in International
Conference on Program Comprehension (ICPC). IEEE, 2019, pp. 358–
368.

[45] H. Wang, X. Xia, D. Lo, J. Grundy, and X. Wang, “Automatic solution
summarization for crash bugs,” in International Conference on Software
Engineering (ICSE). IEEE, 2021, pp. 1286–1297.

[46] A. Marques, N. C. Bradley, and G. C. Murphy, “Characterizing task-
relevant information in natural language software artifacts,” in Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 476–487.

[47] Y. Huang, C. Chen, Z. Xing, T. Lin, and Y. Liu, “Tell them apart: distill-
ing technology differences from crowd-scale comparison discussions,”
in International Conference on Automated Software Engineering (ASE).
IEEE, 2018, pp. 214–224.

[48] S. Pawar, G. K. Palshikar, and P. Bhattacharyya, “Relation extraction:
A survey,” arXiv preprint arXiv:1712.05191, 2017.

[49] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition and applications,” arXiv
preprint arXiv:2002.00388, 2020.

[50] C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and D. Gondek,
“Relation extraction and scoring in deepqa,” IBM Journal of Research
and Development, vol. 56, no. 3.4, pp. 9–1, 2012.

[51] S. Kumar, “A survey of deep learning methods for relation extraction,”
arXiv preprint arXiv:1705.03645, 2017.

[52] Y. Yao, D. Ye, P. Li, X. Han, Y. Lin, Z. Liu, Z. Liu, L. Huang, J. Zhou,
and M. Sun, “DocRED: A large-scale document-level relation extraction
dataset,” in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguis-
tics, 2019, pp. 764–777.

[53] K. Gábor, D. Buscaldi, A.-K. Schumann, B. QasemiZadeh, H. Zargay-
ouna, and T. Charnois, “Semeval-2018 task 7: Semantic relation extrac-
tion and classification in scientific papers,” in Proceedings of The 12th
International Workshop on Semantic Evaluation, 2018, pp. 679–688.

[54] C. Alt, M. Hübner, and L. Hennig, “Fine-tuning pre-trained transformer
language models to distantly supervised relation extraction,” arXiv
preprint arXiv:1906.08646, 2019.

[55] P. Shi and J. Lin, “Simple bert models for relation extraction and
semantic role labeling,” arXiv preprint arXiv:1904.05255, 2019.

[56] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[57] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for nlp,” in International Conference on Machine Learning.
PMLR, 2019, pp. 2790–2799.

[58] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[59] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
API mapping for language migration,” in International Conference on
Software Engineering (ICSE), J. Kramer, J. Bishop, P. T. Devanbu, and
S. Uchitel, Eds. ACM, 2010, pp. 195–204.

[60] B. Collie, P. Ginsbach, J. Woodruff, A. Rajan, and M. F. O’Boyle, “M3:
Semantic api migrations,” in International Conference on Automated
Software Engineering (ASE). IEEE, 2020, pp. 90–102.

[61] A. Gokhale, V. Ganapathy, and Y. Padmanaban, “Inferring likely
mappings between apis,” in 35th International Conference on
Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, D. Notkin, B. H. C. Cheng, and K. Pohl, Eds.
IEEE Computer Society, 2013, pp. 82–91. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606554

[62] R. Pandita, R. Jetley, S. D. Sudarsan, T. Menzies, and L. A. Williams,
“TMAP: discovering relevant API methods through text mining of API
documentation,” J. Softw. Evol. Process., vol. 29, no. 12, 2017.

[63] N. D. Bui, Y. Yu, and L. Jiang, “Sar: Learning cross-language api
mappings with little knowledge,” in Joint Meeting on the Foundations
of Software Engineering (ESEC/FSE), 2019, pp. 796–806.

[64] A. Ni, D. Ramos, A. Z. Yang, I. Lynce, V. Manquinho, R. Martins, and
C. Le Goues, “Soar: A synthesis approach for data science api refac-
toring,” in International Conference on Software Engineering (ICSE).
IEEE, 2021, pp. 112–124.

[65] “Automatically rewrite tf 1.x and compat.v1 api symbols,” https://www.
tensorflow.org/guide/migrate/upgrade, accessed: 2022-08-27.

[66] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-metric
ranking approach for library migration recommendations,” in Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2021, pp. 72–83.

[67] K. W. Nafi, M. Asaduzzaman, B. Roy, C. K. Roy, and K. A. Schnei-
der, “Mining software information sites to recommend cross-language
analogical libraries,” in International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022, pp. 913–924.

[68] C. Chen, Z. Xing, Y. Liu, and K. O. L. Xiong, “Mining likely
analogical apis across third-party libraries via large-scale unsupervised
api semantics embedding,” IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 432–447, 2019.

[69] M. Carpentier, C. Combescure, L. Merlini, and T. V. Perneger, “Kappa
statistic to measure agreement beyond chance in free-response assess-
ments,” BMC medical research methodology, vol. 17, no. 1, pp. 1–8,
2017.

[70] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[71] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 121–136.

[72] K. Hinkelmann and O. Kempthorne, Design and analysis of experiments,
volume 1: Introduction to experimental design. John Wiley & Sons,
2007, vol. 1.

[73] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. sage, 2006.

[74] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, “Code and named entity
recognition in Stack Overflow,” in Annual Meeting of the Association
for Computational Linguistics (ACL). Association for Computational
Linguistics, 2020, pp. 4913–4926.

[75] Y. Huo, Y. Su, H. Zhang, and M. R. Lyu, “ARCLIN: automated API
mention resolution for unformatted texts,” in International Conference
on Software Engineering (ICSE). IEEE, 2022, pp. 138–149.

[76] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp.
1929–1958, 2014. [Online]. Available: https://dl.acm.org/doi/10.5555/
2627435.2670313

[77] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, C. J. C. Burges, L. Bottou,
Z. Ghahramani, and K. Q. Weinberger, Eds., 2013, pp. 3111–
3119. [Online]. Available: https://proceedings.neurips.cc/paper/2013/
hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

[78] X. Han and L. Wang, “A novel document-level relation extraction
method based on bert and entity information,” IEEE Access, vol. 8,
pp. 96 912–96 919, 2020.

[79] H. Tang, Y. Cao, Z. Zhang, J. Cao, F. Fang, S. Wang, and P. Yin, “Hin:
Hierarchical inference network for document-level relation extraction,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2020, pp. 197–209.

[80] S. Clarke, “What is an end user software engineer?” in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[81] M. Meng, S. Steinhardt, and A. Schubert, “How developers use api
documentation: an observation study,” Communication Design Quarterly
Review, vol. 7, no. 2, pp. 40–49, 2019.

[82] D. Nam, B. Myers, B. Vasilescu, and V. Hellendoorn, “Artifacts
for Improving API Knowledge Discovery with ML: A Case Study
of Comparable API Methods,” Jan. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7570960

APPENDIX A

USER STUDY DESIGN

A. Outcome Variables for Quantitative Analysis.

Variable Details

Task completion time (time) We measured the time from when a participant first enters a search query to when they
finish submitting the solution.

Number of search queries
(queries).

We counted the number of search queries participants wrote until they submitted the
final answer, as an approximation of how easy it was to retrieve necessary information.

Number of pages visited
(pages).

We measured the number of web pages visited by a participant, to approximate the
efforts needed in discovery.

Prior knowledge of the task
(prior).

After each task, we asked participants whether they had implemented similar code
in the past, and if so, whether that helped the search or not. We asked the level of
prior knowledge in four levels: no experience (0), vaguely remembering that they have
worked on similar tasks, but not enough to be helpful (1), experience with similar tasks
helped them complete the task (2), and prior knowledge helped them recollect the exact
function name (3).

The correctness of the solu-
tions given the task definition
(correctness).

We tested whether a participant submits an API method that matches with our ideal
solution, which we determined based on our expert knowledge of the tasks. The tasks
were purposefully designed to have multiple potential solutions, with varying implication
and trade-offs, to test whether participants are aware of the alternative solutions. Thus,
“incorrect” solutions may not necessarily be “bad” solutions, and they can still meet the
task requirements with different quality implications, such as performance, readability,
or scalability.

Awareness of the comparable
API methods (awareness).

In each post-task interview, we tested whether a participant was aware of comparable
API methods given the task context. When participants answered that they did not
know other relevant API methods or admitted that they guessed the difference, we
considered them to not be aware of the comparable methods. If they could elaborate on
the differences, we considered that they were aware of the comparable API methods.

Understanding of difference
(understanding).

In the post-task interviews, we also asked the participants to explain the differences
between the comparable API methods. This is independent of the awareness, as one
might already know about comparable API methods but not consider using that during
the task. We measured the level of understanding with two levels: did not know the
difference or guessed the difference (0), and describe at least one difference between
the methods(1).

A
P

P
E

N
D

IX
B

U
S

E
R

S
T

U
D

Y
R

E
S

U
L

T
S

A
.

Q
ua

nt
ita

tiv
e

D
at

a
Su

m
m

ar
y

T
as

k
ID

O
u
r

Id
ea

l
S

o
lu

ti
o
n

C
o
m

p
ar

ab
le

M
et

h
o
d
s

t
i
m
e

p
a
g
e
s

q
u
e
r
i
e
s

c
o
r
r
e
c
t
n
e
s
s

T
o
o
l

N
o

T
o
o
l

N
o

T
o
o
l

N
o

T
o
o
l

N
o

1
s
q
u
e
e
z
e

r
e
s
h
a
p
e

1
5
3
.5

0
6
9
.7

5
2
.0

0
1
.0

0
1
.2

5
1
.0

0
0
.7

5
1
.0

0

2
e
i
n
s
u
m

[
m
a
t
m
u
l
,

m
a
t
m
u
l
]

1
7
1
.7

5
2
2
3
.0

0
3
.0

0
2
.7

5
1
.7

5
2
.2

5
0
.0

0
0
.0

0

3
c
o
n
c
a
t

s
t
a
c
k

1
3
9
.2

5
1
2
3
.7

5
1
.2

5
2
.2

5
1
.2

5
1
.0

0
1
.0

0
1
.0

0

4
b
o
o
l
e
a
n
_
m
a
s
k

[
w
h
e
r
e
,

g
a
t
h
e
r
]

2
8
2
.0

0
1
2
0
.7

5
2
.5

0
2
.0

0
1
.2

5
2
.0

0
1
.0

0
0
.7

5

5
f
l
o
o
r
d
i
v

[
d
i
v
i
d
e
,

f
l
o
o
r
]

2
2
4
.5

0
1
0
6
.0

0
2
.0

0
2
.5

0
1
.5

0
1
.2

5
1
.0

0
1
.0

0

6
r
e
s
i
z
e
_
w
i
t
h
_
p
a
d

r
e
s
i
z
e

2
2
2
.7

5
1
5
8
.2

5
2
.5

0
1
.7

5
1
.0

0
1
.2

5
1
.0

0
0
.7

5

7
c
o
n
v
1
d

c
o
n
v
2
d
/
c
o
n
v
o
l
u
t
i
o
n

2
3
9
.2

5
2
9
8
.7

5
3
.5

0
2
.5

0
1
.5

0
1
.5

0
0
.5

0
0
.2

5

8
s
p
a
r
s
e
_
s
o
f
t
m
a
x
_
c
r
o
s
s
-

_
e
n
t
r
o
p
y
_
w
i
t
h
_
l
o
g
i
t
s

s
o
f
t
m
a
x
_
c
r
o
s
s
-

_
e
n
t
r
o
p
y
_
w
i
t
h
_
l
o
g
i
t
s

2
1
7
.0

0
2
5
5
.5

0
2
.0

0
2
.2

5
1
.0

0
1
.0

0
0
.7

5
0
.5

0

A
v
g

2
0
6
.2

5
1
6
9
.4

7
2
.3

4
2
.1

3
1
.3

1
1
.4

1
0
.7

5
0
.6

6

S
D

9
5
.5

3
1
0
5
.4

0
1
.4

7
1
.3

1
0
.6

9
0
.8

7
0
.4

4
0
.4

8

T
as

k
ID

O
u
r

Id
ea

l
S

o
lu

ti
o
n

C
o
m

p
ar

ab
le

M
et

h
o
d
s

a
w
a
r
e
n
e
s
s

u
n
d
e
r
s
t
a
n
d
i
n
g

T
o
o
l

N
o

T
o
o
l

N
o

1
s
q
u
e
e
z
e

r
e
s
h
a
p
e

0
.7

5
0
.2

5
2
.0

0
2
.0

0

2
e
i
n
s
u
m

[
m
a
t
m
u
l
,

m
a
t
m
u
l
]

1
.0

0
0
.0

0
1
.7

5
0
.0

0

3
c
o
n
c
a
t

s
t
a
c
k

1
.0

0
0
.7

5
2
.0

0
1
.0

0

4
b
o
o
l
e
a
n
_
m
a
s
k

[
w
h
e
r
e
,

g
a
t
h
e
r
]

0
.7

5
0
.0

0
0
.7

5
0
.5

0

5
f
l
o
o
r
d
i
v

[
d
i
v
i
d
e
,

f
l
o
o
r
]

1
.0

0
0
.5

0
1
.7

5
1
.5

0

6
r
e
s
i
z
e
_
w
i
t
h
_
p
a
d

r
e
s
i
z
e

1
.0

0
0
.7

5
2
.0

0
1
.7

5

7
c
o
n
v
1
d

c
o
n
v
2
d
/
c
o
n
v
o
l
u
t
i
o
n

0
.7

5
0
.0

0
1
.7

5
0
.5

0

8
s
p
a
r
s
e
_
s
o
f
t
m
a
x
_
c
r
o
s
s
-

_
e
n
t
r
o
p
y
_
w
i
t
h
_
l
o
g
i
t
s

s
o
f
t
m
a
x
_
c
r
o
s
s
-

_
e
n
t
r
o
p
y
_
w
i
t
h
_
l
o
g
i
t
s

0
.7

5
0
.7

5
1
.5

0
1
.5

0

A
v
g

0
.8

8
0
.3

8
1
.6

9
1
.0

9

S
D

0
.3

4
0
.4

9
0
.6

4
0
.9

6

B. Statistical Test Results

1) Time:

with_tool without_tool

10
0

20
0

30
0

40
0

Coeffs (Errors)

(Intercept) 198.69 (30.01)***
prior -19.08 (14.35)
tool 37.97 (20.93)

AIC = 775.1; BIC = 788.1; LogLik = -381.5
R2m = 0.06. R2c = 0.30

2) Pages:

with_tool without_tool

1
2

3
4

5
6

Coeffs (Errors)

(Intercept) 2.36 (0.40)***
prior -0.15 (0.20)
tool 0.23 (0.32)

AIC = 231.8; BIC = 244.8; LogLik = -109.9
R2m = 0.02. R2c = 0.14

3) Queries:

with_tool without_tool

1
2

3
4

5

Coeffs (Errors)

(Intercept) 1.41 (0.23)***
prior -0.01 (0.12)
tool -0.09 (0.18)

AIC = 160.1; BIC = 173.0; LogLik = -74.0
R2m = 0.00. R2c = 0.14

4) Correctness:

with_tool without_tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coeffs (Errors)

(Intercept) -0.22 (1.50)
prior 0.96 (0.66)
tool 0.88 (0.87)

AIC = 66.2; BIC = 77.0; LogLik = -28.1
R2m = 0.07. R2c = 0.74

5) Awareness:

with_tool without_tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coeffs (Errors)

(Intercept) -1.12 (0.92)
prior 0.30 (0.44)
tool 3.03 (0.95)**

AIC = 73.7; BIC = 84.5; LogLik = -31.9
R2m = 0.35. R2c = 0.53

6) Understanding:

with_tool without_tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coeffs (Errors)

(Intercept) -1.08 (1.10)
prior 1.11 (0.58).
tool 2.63 (0.95)**

AIC = 64.8; BIC = 75.6; LogLik = -27.4
R2m = 0.31. R2c = 0.63

