
EVA: A Tool for Visualizing Software Architectural Evolution
Daye Nam, Youn Kyu Lee, and Nenad Medvidovic

University of Southern California
{dayenam,younkyul,neno}@usc.edu

ABSTRACT
EVA is a tool for visualizing and exploring architectures of evolving,
long-lived software systems. EVA enables its users to assess the im-
pact of architectural design decisions and their systems’ overall ar-
chitectural stability. (Demo Video: https://youtu.be/Q3bnIQz13Eo)

1 INTRODUCTION
As software systems grow in size and complexity, their high-level
structure, i.e., software architecture, also grows in importance [17].
In practice, a system’s architecture often decays over time as critical
design decisions are added and modified [16]. Since architectural de-
cay has been shown to incur technical debt and decrease a system’s
maintainability (e.g., [13]), understanding architectural changes
and tracking the decay become critical.

A number of techniques have been proposed for analyzing ar-
chitectural changes during the course of a system’s evolution (e.g.,
[10, 11, 19]). However, existing techniques and the recent empirical
studies (e.g., [8, 12]) only provide high-level summaries regarding
architectural changes without analyzing underlying reasons and
impact of those changes. Even for some existing techniques that
support visualizing architectures, they only show an architecture
at a single point in the system’s evolution [12, 18]. Therefore, it is
still difficult to track architectural changes.

To aid software architects in understanding an architecture’s
evolution and analyzing architectural changes, we present EVA
(Evolution Visualization for Architectures). EVA provides three
views: (1) Single-Release Architecture, (2) 3-D Architecture-Evolution,
and (3) Pairwise Architecture-Comparison. To present design deci-
sions and/or rationales behind them, EVA collects relevant data from
issue repositories and displays the data along with the architecture-
evolution visualization. By supporting a variety of architecture
recovery techniques, EVA enables users to see multiple architec-
tural representations of a system. While the primary target for EVA
are software system architects, the tool provides useful information
for other software engineers as well, by showing the traceability of
system decisions over time [15]. We evaluated EVA’s accuracy in
the context of real systems to show its soundness.

EVA is distinguished from existing tools because (1) it visualizes
software architectural evolution, (2) it allows architectural explo-
ration, (3) it enables users to gauge the impact of a design decision
that led to architectural changes, and (4) it enables users to assess
the system’s architectural stability [13].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.

2 BACKGROUND
A software system’s architecture captures a view of the key design
choices made for that system. An architecture is represented as
a set of interconnected components, each of which encapsulates a
subset of the system’s functionality and/or data [17]. An architec-
ture of an existing software system can be extracted by architecture
recovery techniques [10, 11, 19]. Recovery techniques cluster code-
level entities (e.g., methods, classes) based on their functionalities
and inter-relationships, and consider the resulting clusters as ar-
chitectural components. While recent research, including our own
[8, 12, 13], has begun investigating how recovery may be applied
to understand the architectural changes in long-lived systems, the
goals of that research have led to highly abridged and summarized
results regarding system change and decay, preventing a deeper
exploration of the collected data. EVA targets this very shortcoming.

3 DESIGN AND IMPLEMENTATION
EVA takes as input (1) a set of system releases and (2) the system’s
issue repository. It presents the output of its analysis in three dif-
ferent views. An example of the three views extracted from the
implementation of GoogleGuava [4] is shown in Figure 1; the figure
is further explained below.

EVA’s architecture comprises two layers, as shown in Figure 2.
(1) EVA's front-end is the Client component responsible for interact-
ing with the user and generating multiple visualizations. (2) EVA's
back-end obtains the issues that have induced the system changes,
extracts the target system’s architecture from its implementation,
maps the contextual information to the architecture, and identifies
architectural changes over a given time-span. The back-end con-
sists of Issue Processor, Architecture Extractor, Context Mapper, and
Change Identifier components. We describe each component next.

Client interacts with a user and the back-end. When a user pro-
vides a URL of the system issue repository (e.g., https://github.com/-
google/guava) and uploads the source code for the desired releases,
EVA's Client forwards them to the back-end layer. As the back-end
returns the architectural evolution information, Client depicts the
information. It uses multiple types of notations and provides inter-
active visualization in order to effectively convey a large amount
of information (e.g., many entities). For example, a small circle rep-
resents a code-level entity; the detailed information of each entity,
such as its name, is hidden by default and is only displayed when a
user’s mouse hovers over the entity, as shown in Figure 1(c).

Issue Processor crawls the issue data from the issue repository
and processes them. Its output is a set of issue information blocks.
Each block contains the corresponding issue’s title, tag, description,
resolution date, and a list of code-level entities that have been
changed to resolve the issue. Issue Processor consists of two sub-
components, Issue Crawler and Issue Tagger.



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Daye Nam, Youn Kyu Lee, and Nenad Medvidovic

Figure 1: EVA’s Three Types of Visualization.

Figure 2: EVA’s Architecture

Figure 3: Annotated Screenshot of EVA's 3-D Architecture-Evolution View



EVA: A Tool for Visualizing Software Architectural Evolution ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Issue Crawler crawls issue data in a given repository. To collect
issues that have actually induced system changes, it only crawls
the issues that are resolved and whose subsequent changes have
been reflected in the system. Issue Crawler also extracts code-level
entities that have been changed when resolving the issue, and a list
of release dates to map the issue to the architecture.

Issue Tagger adds tags (e.g., bug, performance) to each issue. This
enables users to quickly classify the main concern of an issue. If an
issue has been already tagged by system maintainers, EVA adopts
that tag. In other cases, EVA uses a classifier that automatically tags
an issue as enhancement, bug, documentation, or performance, based
on the issue’s title and description. The details of our classifier are
provided in Section 3.1.

Architecture Extractor extracts architectural information in
multiple releases from a code repository. Currently, this information
includes architectural components and corresponding code-level
entities because that is the information provided by existing recov-
ery techniques. EVA is extensible to include additional information.

Context Mapper helps users infer the reasons behind architec-
tural changes. A system’s architectures and issue data are extracted
from different sources. To use the issue data as context for architec-
tural analysis, it is important to identify the relationship between
them. As Issue Processor passes on a list of release dates and issue
information blocks, Context Mapper maps the issues to code-level
entities in the recovered architectures. When the resolution date
of an issue falls between two consecutive release dates, Context
Mapper relates the issue with the latter release. It then maps the
code-level entities listed in the issue information block to the enti-
ties in the architecture of the related release.

Change Identifier identifies architectural changes between
pairs of consecutive releases. It focuses on three types of architec-
tural changes: (1) addition/removal of an architectural component,
(2) addition/removal of a code-level entity, and (3) a change in
code-level entity’s assignment to an architectural component. The
first type of changes indicate that significant functionality or data
have been added/removed in the system, and/or that the system
has undergone significant structural changes. The remaining two
types of changes are indicative of structural shifts and functionality
additions/removals that are localized in scope.

3.1 Implementation
We have implemented EVA’s Issue Processor, Context Mapper, and
Change Identifier components using Python. Within the Issue Pro-
cessor component, we used PyGithub [5] for Issue Crawler, and
gensim [2] for Issue Tagger. For Issue Tagger, we trained our classi-
fier on approximately 16, 000 issue-tag pairs collected from Github
[3] repositories. We first generated vectors using Doc2Vec [14] for
each issue and trained a logistic regression classifier. Issue Processor,
Context Mapper, and Change Identifier consist of ∼900 newly writ-
ten SLOC, in addition to several off-the-shelf libraries. Intermediate
data are transformed into JSON files with pre-defined formats.

EVA’s Architecture Extractor wraps ARCADE [12], a workbench
that employs a suite of architecture recovery techniques. Any re-
covery technique (e.g., [10, 11, 19]) can be wrapped in the same
manner. The set of recovered architectures is transformed into a
single JSON file with a pre-defined format.

Finally, we implemented EVA's Client as a web application, using
HTML5 with JavaScript libraries that include D3 [1] for data-driven
visualization and TweenMax [7] for 3-D visualization. Client com-
bines ∼1,300 newly written SLOC with off-the-shelf libraries.

4 KEY FEATURES
EVA provides visualization capabilities, the broader context of ar-
chitectural evolution, and multiple coordinated views.

Visualization. Given a set of source codes across multiple re-
leases, EVA visualizes the system’s architectural evolution. EVA
depicts a code-level entity as a small circle contained within an
architectural component, which is depicted as a larger circle. EVA
distinguishes different groups of code-level entities (e.g., imple-
mentation packages) using color-coding. For example, in Figure 3,
code-level entities extracted from package common.util are colored
blue while entities extracted from common.escape are green. To
enable users to analyze multiple aspects of architectural evolution,
EVA provides three different types of views (recall Figure 1).

Single-Release Architecture View depicts the architecture of one
release as shown in Figure 1(a). This view enables users to under-
stand the functionality of each architectural component based on
code-level entities. Label “i” on the code-level entity circle indicates
that an implementation issue was mapped to the entity. When a
user’s mouse hovers above the “i”, EVA displays the detailed infor-
mation of the issue (e.g., its tag and title).

3-D Architecture-Evolution View presents the architectures of
multiple releases in a single compositional view, as shown in Fig-
ure 1(b). In this view, the architecture of each release is shown
in a layer, and the chosen set of releases is presented as stacked
layers. A code-level entity that occurs across multiple releases is
traced by a line that enables the user to track changes. When a
code-level entity moves from one architectural component to an-
other, EVA highlights the entity by adding a white border around its
corresponding circle, as shown in the selected entity in Figure 1(b).

Pairwise Architecture-Comparison View shows the architectural
differences between two releases, as shown in Figure 1(c). Labels
“a” and “r” on the circles representing code-level entities indicate
that a given entity has been added or removed. When a code-level
entity is moved from one architectural component to another, the
entity’s circle is tagged with “-” in the earlier release and with “+”
in the later release. Coupled with the color-coding, this allows a
user to intuitively detect functionality shifts within architectural
components. For example, the group of yellow circles labeled with
“a” in Figure 1(c) quickly indicates to a user that functionality related
to package com.google.common.graph is newly added to the system.

Since EVA visualizes a system’s architecture and its changes in a
single view, a user can easily get a sense of the amount and scope of
changes. This allows the user to assess the architecture’s stability.

Contextualization.Understanding a system’s architectural evo-
lution requires the ability to reason why a given change has been
made. To this end, EVA displays implementation-issue data along
with the architectures, as depicted in the lower-right portion of
Figure 3. This information enables the user to infer the rationale
behind an architectural change. Namely, when an issue is mapped
to a code-level entity that was involved in an architectural change
and EVA labels the entity’s corresponding circle with an “i”, the



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Daye Nam, Youn Kyu Lee, and Nenad Medvidovic

user can observe this easily. The user may reasonably assume that
at least part of the rationale for the architectural change stems from
the issue. Finally, the number of code entities that are labeled with a
given issue is indicative of the scope of the architectural design de-
cisions made in order to resolve the issue: the design decisions may
be confined to a single code-level entity, multiple entities within a
single architectural component, or multiple components.

Multiple Views. EVA's Architecture Extractor (recall Figure 2) is
an extensible module that can wrap different recovery techniques.
For example, ARC [11] relies on information retrieval to isolate the
concerns implemented by a system, while ACDC [19] leverages
static dependency analysis. By relying on multiple recovery tech-
niques, a user can view the system’s architecture from multiple
perspectives and improve her overall understanding of the system.

5 EVALUATION
We have assessed EVA for usability and accuracy. Due to length
restrictions, we only illustrate EVA's accuracy. Specifically, we high-
light EVA's (1) precision, i.e., its identified changes that are actually
architectural, and (2) recall, i.e., whether EVA missed any of the ac-
tual architectural changes. As our subject, we use Google Guava [4],
a set of libraries for Java comprising ∼1 MSLOC. Our discussion in
this section is based on using ACDC [19] as the recovery technique
within EVA; similar results were obtained with other techniques
available in ARCADE [12] (recall Figure 2).

EVA flagged more than 1,000 architectural changes in Guava’s six
most recent major releases alone. There was no ground-truth avail-
able to calculate EVA's precision, forcing us to manually inspect
EVA's output. Instead of inspecting every change which would have
been time consuming, we selected 100 of the changes randomly; 92
of those were architectural (i.e., 92% precision). All false positives
occurred because of ACDC’s component-clustering decisions. In
each case, the false positives can bemitigated by applying additional
recovery techniques and correlating the results.

Open-source projects tend not to maintain lists of architectural
changes [9]. For this reason, we decided to measure EVA's recall
using the Guava release notes. As the purpose of the release notes is
to inform end-users of software updates, some architectural changes
may be omitted andmultiple related changes summarized in a single
note. We manually inspected each note and the corresponding
source code, to determine which notes are architectural. We found
a total of 59 notes that are architectural across Guava’s six latest
releases, of which EVA was able to identify 57 (i.e., 97% recall).

6 RELATEDWORK
Tu and Godfrey [18] proposed an integrated approach to ana-
lyze a system’s architectural evolution with metrics, visualization
support, and techniques for reasoning about structural changes.
Behnamghader et al. [8] described a large-scale empirical study of
architectural changes across different system releases. ARCADE
[12] employs third-party libraries to support visualizing architec-
tures recovered from implementations. SonarQube [6], an open-
source platform for continuous inspection of code quality, has sev-
eral plug-ins for visualizing architectural evolution. All of the above
approaches make general observations, provide highly summarized

results, only support static visualization of the architecture of a sin-
gle system release, and do not support focusing on specific design
decisions or the rationales behind them.

7 CONCLUSION AND FUTUREWORK
EVA helps explore, visualize, and understand multiple facets of
architectural evolution. It explicitly relates architecture with imple-
mentation details, and allows easy and intuitive system evolution
tracking across multiple releases. We are in the process of deploying
EVA to a large development organization, which will help assess
and improve EVA’s scalability and guide our plans for updating
it for more general use. We plan to extend EVA to provide addi-
tional information that can help users understand architectural
evolution further. Our current work is focusing on determining and
presenting explicit rationales behind architectural changes, with
the goal to support tracking design rationale over time. We also aim
to automatically identify architectural changes leading to different
types of technical debt for more efficient analysis. EVA is available
for download from https://github.com/namdy0429/EVA.

8 ACKNOWLEDGMENTS
This work is supported by the U.S. National Science Foundation
under grants No. 1618231 and 1717963, U.S. Office of Naval Research
under grant No. N00014-17-1-2896, and by Huawei Technologies.

REFERENCES
[1] 2017. D3. https://d3js.org. (2017).
[2] 2017. Gensim. https://radimrehurek.com/gensim. (2017).
[3] 2017. Github. https://github.com. (2017).
[4] 2017. Guava. https://github.com/google/guava. (2017).
[5] 2017. PyGithub. http://pygithub.readthedocs.io/en/latest/. (2017).
[6] 2017. SonarQube. https://www.sonarqube.org. (2017).
[7] 2017. TweenMax. https://greensock.com/tweenmax. (2017).
[8] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and N. Medvidovic.

2017. A Large-scale Study of Architectural Evolution in Open-source Software
Systems. Empirical Software Engineering 22, 3 (2017).

[9] J. Coelho and M. T. Valente. 2017. Why Modern Open Source Projects Fail. In
Proceedings of the 11th Joint Meeting on Foundations of Software Engineering.

[10] J. Garcia, I. Ivkovic, and N. Medvidovic. 2013. A Comparative Analysis of Soft-
ware Architecture Recovery Techniques. In Proceedings of the 28th International
Conference on Automated Software Engineering.

[11] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai. 2011. Enhancing
Architectural Recovery Using Concerns. In Proceedings of the 26th International
Conference on Automated Software Engineering.

[12] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and N. Medvidovic.
2015. An Empirical Study of Architectural Change in Open-Source Software
Systems. In Proceedings of the 12th Working Conference on Mining Software Repos-
itories.

[13] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic. 2016. Relating Architectural
Decay and Sustainability of Software Systems. In Proceedings of the 13th Working
Conference on Software Architecture.

[14] Q. Le and T. Mikolov. 2014. Distributed Representations of Sentences and Docu-
ments. In Proceedings of the 31st International Conference on Machine Learning.

[15] M. Paixão, J. Krinke, D. G. Han, C. Ragkhitwetsagul, and M. Harman. 2017. Are
Developers Aware of the Architectural Impact of Their Changes?. In Proceedings
of the 32nd International Conference on Automated Software Engineering.

[16] D. E. Perry and A. L. Wolf. 1992. Foundations for the Study of Software Architec-
ture. ACM SIGSOFT Software Engineering Notes 17, 4 (1992).

[17] R. N. Taylor, N. Medvidovic, and E. Dashofy. 2009. Software Architecture: Founda-
tions, Theory, and Practice. Wiley.

[18] Q. Tu and M. W. Godfrey. 2002. An Integrated Approach for Studying Architec-
tural Evolution. In Proceedings of the 10th International Workshop on Program
Comprehension.

[19] V. Tzerpos and R. C. Holt. 2000. ACDC: An Algorithm for Comprehension-Driven
Clustering. In Proceedings of the 7th Working Conference on Reverse Engineering.

https://d3js.org
https://radimrehurek.com/gensim
https://github.com
https://github.com/google/guava
http://pygithub.readthedocs.io/en/latest/
https://www.sonarqube.org
https://greensock.com/tweenmax

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Implementation

	4 Key Features
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgments
	References

