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Jointly launched in mid-2011 by major search engines like 

Google and Bing, Schema.org is designed to facilitate structured 

and knowledge graph–centric search applications on the 

Web. The Web Data Commons project has crawled increasing 

amounts of Schema.org data in recent years, providing a 

golden opportunity for socio-technological data studies 

that consider the semantics of content. The authors present 

empirical studies of organizations in three economic sectors 

that expose semantically linked Schema.org annotations.

Due to a strong push by search engines like 
Google and Bing, many websites continue to 
publish and expose increasing amounts of 
semantic markup in the form of microdata, 

RDFa, and Schema.org annotations (http://schema.org). 

The last has become especially popular, and is displayed 
directly in search results by Google for some categories. 
Annotations, published in topical domains such as Orga-
nization and Person using the Schema.org vocabulary, 
are known to influence results of the Google Knowledge 
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Graph, in addition to influencing the 
search rankings, which further incen-
tivizes public-facing entities to mark 
up their webpages.  

Recently, the Web Data Commons 
(WDC) project1 has crawled and made 
publicly available large amounts of 
Schema.org annotations published in 
various domains. With careful pro-
cessing, this data can be used to study 
different Web domains in terms of their 
semantic and topical properties. Partic-
ularly pertinent is the study of organiza-
tions in different economic sectors. Cur-
rently, WDC Schema.org crawls cover 
several organizational subdomains 
such as Hospital, School, Museum, 
Restaurant, and Hotel. Each such sub-
domain corresponds to a class in the 
Schema.org vocabulary. Although the 
WDC data has limitations like any 
large-scale crawling project, the consis-
tent, public availability of this data over 
a period of at least three years provides 
a rich opportunity—and accompany-
ing challenges—for socio-technological 
data studies that might not otherwise 
have been possible.

In this article, we present a princi-
pled methodology for studying orga-
nizational Schema.org annotations on 
the general Web. We draw on interdis-
ciplinary techniques inspired by both 
Semantic Web research and network 
theory, and place our methodology 
in a broad context such that it can be 
used to study aspects of other topical 
domains as well. An important chal-
lenge arises from the observation that, 
unlike the hyperlinked (“regular”) 
Web or Semantic Web ecosystems like 
Linked Open Data,2 Schema.org anno-
tations gathered by the WDC project 
do not have a natural graph-theoretic 
structure. Also, microdata is still in its 
infancy, having only “taken off” since 
2011, with the full pace of growth not 

fully documented or known due to its 
inherently decentralized nature. We 
address both issues by showing a prin-
cipled way to interlink Schema.org 
knowledge fragments and analyze the 
subsequent link structures.

Our empirical studies characterize 
both the scope and diversity of Schema 
.org annotations, especially whether 
they obey power laws inspired by classic 
network science.3 We examine the digi-
tal Schema.org footprint of three organi-
zational domains—Hospital, Museum, 

and School—that are economically 
and functionally distinct in the non-
digital world. Trends and differences 
that we observed both across the orga-
nizations (cross-sectional analysis) 
and across time (longitudinal analysis) 
illustrate the importance of structure 
and semantics in fine-grained Web sci-
ence research with underlying socio- 
technological motivations. Finally, we 
describe potential future studies made 
feasible by our proposed methodology, 
especially network-theoretic studies 
that were previously applicable only 
to explicitly connected regions of the 
Web, such as Linked Open Data and 
observable aspects of social media. 

RELATED WORK
As Schema.org has continued to 
increase in popularity, several re
searchers have proposed critically 

analyzing its growth and evolution. 
A (noncomprehensive) set of Schema 
.org studies include those on its neces-
sity and design philosophy,4 norma-
tive analysis,5 extraction and identity 
resolution,6 and deployment analy-
sis,7 among many others. The work 
of Robert Meusel6 is closest to ours 
in spirit, but because his analysis is 
purely statistical, he does not actually 
construct networks from the data or 
attempt to analyze measures of diver-
sity or dynamicity.

Network theory has been closely 
linked to the Web sciences since at 
least the early 2000s. An influential 
work by Albert-László Barabási, Réka 
Albert, and Hawoong Jeong3 on the 
preferential attachment model gained 
significant traction, accounting for 
many of the structural power-law 
properties and “physics” observed for 
real-world hyperlink networks, espe-
cially the presence of hubs. Although 
Schema.org data is not naturally struc-
tured as a network, we devise experi-
ments to verify if power-law properties 
also hold for the annotations pub-
lished by various organizations, and 
the cross-sectional and longitudinal 
variance of these properties.

Within Semantic Web research is a 
movement that advocates a set of prin-
ciples known as Linked Open Data that 
governs how data should be published, 

OUR EMPIRICAL STUDIES CHARACTERIZE 
BOTH THE SCOPE AND DIVERSITY OF 

SCHEMA.ORG ANNOTATIONS, ESPECIALLY 
WHETHER THEY OBEY POWER LAWS.
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linked, and accessed.2 The movement 
espouses open standards and data 
interlinking: the fourth Linked Open 
Data principle, for example, states 
that new datasets should be linked 
to existing RDF datasets already pub-
lished as Linked Open Data to qualify 
as Linked Open Data themselves. The 
movement has been quite successful, 
growing by orders of magnitude since 
its founding in 2007. Unlike Linked 
Open Data, the data considered in 
this article does not have the benefit 
of interlinking, which is challeng-
ing for structural techniques. How-
ever, with our proposed methodology, 
Linked Open Data–centric analyses 
become feasible on applicable subsets 
of Schema.org data.

We note that Schema.org differs 
in both its incentives and adoptees 
from Linked Open Data despite sur-
face similarities: unlike Linked Open 
Data, Schema.org is ontologically con-
strained (all markup is roughly typed 
according to the Schema.org vocabu-
lary4), has a much broader audience 
than the publishers of Linked Open 
Data, and is directly consumed by 
search engines like Google and Bing in 
both ranking and display of retrieved 
items. In general, the Schema.org eco-
system is more concerned with search 
rather than explicit data interlinking 
or strong semantics. 

MOTIVATION
Our work is influenced by various sub-
fields, some of which have historically 
been instrumental in the Web sciences, 
while others are emerging, typically 
industrially motivated research areas. 

Resource Description 
Framework (RDF)
RDF is a graph-theoretic data model 
that is useful for publishing structured 

data on the Web, and has emerged as 
the de facto standard on the Seman-
tic Web, serving as the basis for 
more expressive languages like RDF 
Schema (RDFS) and the Web Ontol-
ogy Language (OWL). Descriptions 
and standards for these are avail-
able in depth on the World Wide 
Web Consortium (W3C) standards 
page for the Semantic Web (www.w3 
.org/standards/semanticWeb). An RDF 
graph can be defined as a set of tri-
ples, where each triple is of the form 
(subject, property object). Subjects 
and properties must necessarily be 
Uniform Resource Identifiers (URIs), 
and even more generally, Interna-
tionalized Resource Identifiers (IRIs), 
whereas objects can be either URIs or 
literals, such as a string or a number. 
A triple may also be viewed as an edge 
in a directed, labeled graph, with the 
property serving as the edge label. 

Importantly, subjects and objects 
can be blank nodes, which are special 
(in the sense of semantics) abstract 
identifiers. This identifier is used for 
an entity that exists but is primarily 
identified through its properties, since 
it is an anonymous resource to which a 
URI has not been explicitly allocated.

RDF triples are defined in the con-
text of a graph, which is just the default 
(unnamed) graph in many cases. Each 
Schema.org annotation in the WDC 
crawls is serialized as a blank node, 
defined in the context of the web-
page URL from which the annotation 
was scraped. Annotations are thus 
serialized not as triples but as quads. 
For example, if the (simplified) tri-
ple (:wonder_woman, sch:rating, 7.8)  
is extracted from two webpages,  
i mdb.com/wonder_woma n a nd 
moviereviews.com/wonder_woman,  
the crawl would contain two quads:  
(:wonder_woman, sch:rating, 7.8, imdb 

.com/wonder_woman) and (:wonder 
_woman, sch:rating, 7.8, moviereviews 
.com/wonder_woman).

Graphs and network theory
Historically, and in many current 
fields of computer science research 
that overlap the Web sciences, graphs 
have played an important mathemat-
ical and computational role. The sim-
plest definition of an undirected graph 
G is as a tuple (V, E) where V is a set of 
nodes and E (the set of edges) is a subset 
of V X V, with an element {u,v} indicat-
ing that an edge exists between nodes 
u and v. Similar definitions can be 
devised for directed graphs, attributed 
graphs, and weighted graphs.  

Network theory, particularly in 
computer science, draws heavily on 
graph theory and representation, 
including undirected and directed 
graphs, weighted graphs, multi-re-
lational graphs, and time-evolving 
graphs. The analyses used in this arti-
cle are principally concerned with an 
undirected tripartite graph, whose 
construction, motivation, and struc-
ture are detailed later.  

DATA COLLECTION
The studies described in this article 
use publicly available Schema.org 
annotations released by the WDC proj-
ect. We consider annotated instances 
scraped from webpages and released as 
N-Quads files for three organizational 
domains in the Schema.org vocabu-
lary: School, Museum, and Hospital. 

Table 1 profiles the data for these 
domains collected over three years, 
2014–2016. We draw special atten-
tion to the concept of the pay-level 
domain (PLD), which can be thought 
of as a “website” or “Web domain,” 
although in some cases the domain is 
further constrained by location (for 
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example, chicago.backpage.com vs. 
backpage.com). Table 2 provides some 
examples of the difference between 
a PLD and a webpage URL for sev-
eral common scenarios for the School 
domain. For those who are inter-
ested in replicating extractions of 
PLDs from URLs, a Python function 
that takes a URL as input and out-
puts its PLD can be found at https://
d r i v e . g o o g l e .c o m /d r i v e/ f o l d e r s 
/0B7YcfP_4gRhmYjVNa2lWUnk1Vk-
k?usp=sharing.

Note that the trend in Table 1 that 
PLDs have continued to increase is 
consistent with increased adoption, 
though the data also shows that the 
crawl itself has changed: total file sizes 
significantly decline from 2015 to 2016 
in the general case, despite evidence of 
increased adoption.

It is also important to note that each 
Schema.org annotation is a blank node 
from the WDC perspective. Figure 1 

shows some examples. Each blank 
node is thus associated with a set of 
triples describing the entity itself and 
with a single URL from which it was 
scraped. Formally, the representation 
is N-Quads; we provided an example 
describing Wonder Woman earlier. 
All studies in this article are at the 

abstraction of the PLD rather than an 
individual webpage URL. 

TRIPARTITE NETWORK 
CONSTRUCTION
The data described earlier may be 
thought of as a forest of RDF graphlets 
since, by default, two blank nodes 

TABLE 1. Data collected for three topical domains in the 
Schema.org vocabulary over three years: 2014/2015/2016.

Data category School domain Museum domain Hospital domain

Total file size in Mbytes (G-zip 
compressed N-Quads files)

154/248/97.1 2.7/4.1/92.2 98/203/77

URLs (×1,000) 403/319/926 7/24/96 233/407/191

Quads (×1,000,000) 7.79/16.43/3.83 1.32/2.54/4.27 4.68/10.86/4.01

Pay-level domains (PLDs) 165/200/297 43/69/123 174/223/335

Blank-node entities (×1,000) 668/1,240/217 8.5/29.1/100.6 270/514/215

TABLE 2. Examples of School pay-level domains (PLDs).

Scenario School name(s) with identifier 
(in this case, phone number)

Webpage(s) PLD(s)

Same school, different 
webpages, same PLD

Tory Urban Retreat
(6443844329)

http://www.wellingtonnz.com/discover/things-to 
-do/shopping/yoga-unlimited-at-tory-urban-retreat/

http://www.wellingtonnz.com/discover/things-to-do 
/shopping/tory-urban-retreat/

http://www.wellingtonnz.com/

Same school, different 
webpages, different 
PLDs

Rose Valley Elementary School
(13014494990)

https://www.ziprealty.com/schools/detail 
/360383/FORT-WASHINGTON,MD/PRINCE 
-GEORGE’S-COUNTY-PUBLIC-SCHOOLS 
/ROSE-VALLEY-ELEMENTARY-SCHOOL

http://www.publicschoolreview.com/rose 
-valley-elementary-school-profile/20744

http://www.ziprealty.com/

http://www.publicschoolreview 
.com/

Different schools, 
different webpages, 
same PLD

Rose Valley Elementary School
(13014494990)

Damascus High School
(13012537030)

http://www.publicschoolreview.com/rose-valley 
-elementary-school-profile/20744

http://www.publicschoolreview.com/damascus-high 
-school-profile

http://www.publicschoolreview 
.com/
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potentially referring to the same 
underlying organization are not 
linked. This more-than-five-decades-
old research problem8 of automati-
cally resolving entities into a single 
underlying entity is known as entity 
resolution (ER). Although much prog-
ress has been achieved in ER, particu-
larly in the Semantic Web community 
for graphs published as RDF Linked 
Open Data,9,10 the problem has not 
been solved and only limited work11 
has been done on difficult large-scale 
datasets.

Without ER, it is difficult apply-
ing network theory of any kind in a 
study because the RDF graphlets for-
est is heavily disconnected. A critical 

real-world observation that we can 
draw on to address this issue is that 
organizations almost always publish 
their phone numbers (and in many 
cases, addresses), since a primary 
incentive in publishing Schema.org 
annotations is search optimization by 
engines like Google. As we are only 
concerned with organizations in this 
article, we consider an organization’s 
phones as its pseudo-identifiers. Specif-
ically, two blank nodes are said to rep-
resent the same organization if they 
share at least one pseudo-identifier. 
We refer to such a link as a resolution 
link. In the same vein, two blank nodes 
are said to be semantically linked if they 
co-occur within the context of a PLD.

We can concretize and represent 
both resolution and semantic links as 
a tripartite undirected network. Figure 1 
shows an example of this construction 
for the School domain. A multi-partite 
network is defined to not allow links 
between nodes in the same partition, 
only across partitions. We also note 
that it is possible to “close” the graph 
in several ways by using paths. For 
example, we could derive a bipartite 
network that abstracts away blank 
nodes completely by connecting a 
pseudo-identifier to a PLD if a blank 
node extracted from that PLD contains 
the pseudo-identifier as a property. In 
the graph-theoretic representation in 
Figure 1, this would be equivalent to 
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FIGURE 1. Examples of Schema.org annotations scraped from three independent URLs (left) and of tripartite network construction (right). 
The network has two types of links: resolution (between the blue and green nodes) and semantic (between the blue and pink nodes).
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connecting a node from the pseudo- 
identifier partition to a node from the 
PLD partition if a path exists between 
the two nodes in the original tripartite 
network.

We consider phone numbers instead 
of addresses primarily because the for-
mer are easier to normalize and more 
readily available in the corpus than 
the latter, and also because it is not 
self-evident that addresses can serve 
the role of pseudo-identifiers. It is 
also highly unlikely after normal-
ization for any two distinct organiza-
tions to have the same phone number, 
which makes the network very pre-
cise. Moreover, this manner of inter-
linking has precedent in previous 
Semantic Web research, particularly 
in using email addresses to interlink 
fragments typed according to the 
Friend-of-a Friend (FOAF) ontology 
(www.foaf-project.org).

It is possible for organizations to be 
linked in the real world (for example, 
one might be a subsidiary of another) 
and have different phone numbers. 
This kind of information, unfortu-
nately, is difficult to acquire and 
often requires a paid service like that 
offered by Thomson Reuters (www 
.t homson reuters.com/en/products 
-services.html). This is one reason why 
the phone number is only a pseudo- 
identifier. An interesting goal of future 
work would be to try completing the 
graph further and empirically assess if 
that changes any of the results we pres-
ent.  While we do not address this issue 
further, we note that it is not uncom-
mon for Web sciences researchers to 
perform analysis of partially complete 
(albeit precise) graphs.  

CASE STUDIES
To provide a conceptually simple illus-
tration of how constructed tripartite 

networks can be used to analyze 
Schema.org markup published by dif-
ferent organizations on the Web, here 
we analyze the results from three sets 
of experiments using our collected 
data on the topical domains Hospital, 
Museum, and School. Bear in mind 
that the scope of the analysis is nec-
essarily limited to these domains and 
the 2014–2016 time frame, along with 
inherent bias or incompleteness that 
might be present in the WDC crawls. 
Later we discuss more ambitious 
studies that become possible due 
to our proposed tripartite network–
theoretic methodology.

Sharing and representation
In early network-theoretic studies 
of the hyperlinked Web, the degree 
distribution of the nodes obeyed the 
power law, indicating the presence of 
hubs in the network.3 In other words, 
some nodes—Wikipedia, for example—
received a disproportionate number of 
incoming links while most nodes had 
few, if any, incoming links. The first 
set of our experiments aimed to deter-
mine whether the sharing and repre-
sentation of Schema.org annotations 
obey similar laws. Are some annota-
tions overrepresented in the data? Is 
this finding consistent across years 
and topical domains? What do the 
hubs in such a distribution correspond 
to in the real world?

To answer these questions, we con-
structed a tripartite network in which 
each pseudo-identifier is represented 
as a unique Schema.org “item”—the 
equivalent of a node in a Web hyper-
link graph. The degree of each node 
is computed as the number of blank 
nodes that have an edge incident on 
the node. In Figure 1, for example, 
the degrees of the two phone-number 
nodes are 2 and 1, respectively. 

If the empirical frequency F of the 
degree k obeys a power law, F would 
be proportional to k-a for some posi-
tive constant a. On a log-log plot, a per-
fect power-law distribution would be 
a straight line with a negative slope. 
As in previous studies, we plotted the 
empirical frequency of the degree on 
the y-axis and the degree itself on the 
x-axis to observe if this is so.

Figure 2a illustrates the results. Hos-
pital seems to show remarkable stabil-
ity and exhibits (along with Museum, 
to a more limited extent) the familiar 
power-law distributions observed on 
the hyperlinked Web,4 but School does 
not seem to exhibit a power-law dis-
tribution. In previous years the curve 
was almost quadratic, which suggests a 
normal distribution. Both Museum and 
School appear to be evolving, not being 
as stable as Hospital. Museum seems to 
be evolving in a more regular way than 
School, which is the least regular of the 
three domains. 

To identify the specific organiza-
tions that correspond to high-degree  
nodes (“hubs”), we noted the pseudo- 
identifiers representing the highest- 
degree nodes and manually searched 
for the identifiers online. 

For Museum, there are several 
examples including Stadel Museum 
in Frankfurt, Penn Museum in Phil-
adelphia, and the American Folk Art 
Museum in New York City. Although 
it is impossible to manually verify the 
pseudo-identifiers of all high-degree 
nodes, this finding provides some evi-
dence that higher-degree nodes corre-
spond to museums that are well visited 
but do not necessarily reflect ranking 
in terms of endowment or influence. 
Slightly lesser-known museums might 
be higher in ranking by advertising 
more aggressively through semantic 
markups.
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Our analysis yielded similar find-
ings for both School and Hospital. 
Examples of high-degree nodes for the 
former include Albuquerque Public 

Schools and the American Graphics 
Institute and for the latter include St. 
Jude Hospital and Queen of the Valley 
Medical Association. 

Diversity
The set of experiments described 
above did not take the PLDs into 
account. Furthermore, it did not 
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FIGURE 2. Using tripartite networks to analyze Schema.org markup for the topical domains Hospital, Museum, and School. (a) Log-log 
illustration of the sharing and representation of Schema.org pseudo-identifiers as a function of their degree for all three domains. (b) 
Heat-map representations of the Jaccard similarity matrices (with 1.0 indicating perfect similarity and minimum diversity). In the general 
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present a clear picture of whether 
Schema.org is diverse. Put simply, did 
every PLD roughly describe the same 
set of items? We addressed this ques-
tion visually in a second set of exper-
iments by first closing the tripartite 
network into a bipartite network, with 
one partition consisting of pseudo- 
identifiers and another partition con-
sisting of PLDs, and then linking two 
nodes (across partitions only) if a path 
existed between them in the original 
network. 

We represent the bipartite network 
as a dictionary D of key-value pairs, 
where the key is a PLD and the value 
is the set of pseudo-identifiers associ-
ated with the PLD. We denote the set 
{p1, …, p|p|} of PLDs as P. Next, using an 
inverted index methodology, we effi-
ciently compute the Jaccard similar-
ity matrix on the cross product P × P. 
Specifically, the value of the cell posi-
tionally denoted by (i, j) is computed 
using the formula |D[pi] ∩ D[pj]|/|D[pi] 
∪ D[pj]|. Note that the elements on the 
diagonal are always 1.0. For a given 
domain and year, we illustrate the 
matrix using a heat map as shown in 
Figure 2b, with higher values indi-
cated with redder colors.

Although there are small pock-
ets of high heat on the maps, indi-
cating significant commonalities, 
much of the map is characterized by 
lower Jaccard scores and hence higher 
diversity. Across time, the results 
are harder to compare because of the 
flux and growth in PLDs (especially 
for Museum). For School and Hospi-
tal, the evidence indicates that diver-
sity might be decreasing, as there 
are more hot spots in 2016 for both 
domains than in 2014, but the effect is 
quite limited. Overall, semantic mark-
ups remain diverse in organizational 
domains.   

Dynamic properties of PLDs
In the final set of experiments, we 
mapped the dynamic activity of PLDs 
according to the WDC crawl by com-
puting and plotting the number of 
blank nodes and the number of pseudo- 
identifiers recorded for each PLD 
(for a fixed topical domain) over the 
period 2014–2016. If a PLD did not have 
Schema.org annotations for the topi-
cal domain for a year, we set these val-
ues to 0. A nonzero value in the blank 
node plot indicates that at least one 

Schema.org annotation must have 
been present and got extracted. For 
greater readability, we assigned each 
PLD an integer (PLD index) and placed 
these integers on the x-axis of the plots 
shown in Figure 3. 

A conservative interpretation of 
the plots is that the WDC crawl is 
becoming “more complete” since a 
nonzero value in either 2014 or 2015 
strongly implies a nonzero value in 
2016. It could also mean that more 
Schema.org data is getting published 
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FIGURE 3. Per-PLD longitudinal illustrations of the three organizational domains both as 
a function of the number of pseudo-identifiers and the number of blank nodes. The x-axis 
has no intrinsic ordering.



50	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

WEB SCIENCE

(and thus extracted). There is external 
evidence for both interpretations, but 
more careful crawls will be needed to 
determine either contribution.

The plots also illustrate interesting 
cross-sectional differences. The orga-
nizational domain Hospital, which 
earlier had the smoothest scale-free 
distributions, also shows greater dis-
tributional coverage compared to the 
other domains in Figure 3. More stud-
ies are needed on the nature of the 
irregularity of School and Museum, 
and we describe some possible direc-
tions in the next section. To facilitate 
such studies, all raw data, including the 
PLD mappings, are available as supple-
mental spreadsheets at https://drive 
.google.com/drive/folders/0B7Ycf P 
_4 g R h mY j V N a 2 l W U n k 1V k k? u s p 
=sharing.    

FUTURE WORK
The three sets of experiments described 
above were initial empirical responses 
to three broad socio-technological 
questions we formulated. The first set 
of experiments addressed the question 
of whether Schema.org growth and 
evolution for the three organization 
types mirrored that of the hyper-
linked Web in a semantically well- 
defined way, the second set examined 
the diversity of Schema.org entities, 
and the third set was a preliminary 
longitudinal study. All three studies 
were feasible because, with our pro-
posed tripartite network construction, 
we were able to transform Schema 
.org from a forest of RDF graphlets to 
a conceptual network where nodes 
represent entities (for example, spe-
cific schools) and links are analogous 
to entity-level hyperlinks in that a 
link is forged between two entities 
if they share a PLD—that is, they are 
contextually co-located on the Web. 

In this way, a global picture of spe-
cific Schema.org types (of which the 
instances can be interlinked using 
pseudo-identifiers) emerges.

These representational transfor-
mations make other studies possible, 
including centrality and node impor-
tance analyses as well as global com-
munity detection on each Schema 
.org type’s network in the context of 
the overall Web as well as within a 
local (PLD-specific) context. In addi-
tion, the research questions we formu-
lated could be addressed in alternative 
ways. For example, diversity could be 
explored using homophily metrics 
instead of Jaccard similarity matrices. 

All such studies can leverage our 
openly shared supplementary data. 
Also, Semantic Web researchers can now 
undertake studies traditionally limited 
to Linked Open Data.12 For example, we 
are currently comparing the growth, 

semantics, and structural metrics of 
the more standardized and connected 
Linked Open Data ecosystem with the 
decentralized Schema.org ecosystem.

This article proposed a novel 
methodology to characterize 
three organizational domains 

that already have a significant Schema 
.org presence. To do so in a principled 
manner, we construct networks using 
domain-specific linking keys (in our 
case, phone numbers) and process and 
analyze the networks using the frame-
work of network theory. Our analy-
sis shows that while the distribution 
of Schema.org annotations has clear, 
relatively stable power-law dependen-
cies, there is considerable evidence of 
both diversity and dynamic behavior. 
Most importantly, the behavior across 
topical domains is quite different 
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quantitatively, although some com-
mon trends stand out. We conclude that 
the structure and semantics in Schema 
.org annotations are rich resources for 
future, more fine-grained data studies 
in the Web sciences.  
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This work was not funded by any agency, 
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REFERENCES
1.	 H. Mühleisen and C. Bizer, “Web 

Data Commons—Extracting Struc-
tured Data from Two Large Web 
Corpora,” Proc. WWW 2012 Workshop 
Linked Data on the Web (LDOW 12), 
2012; http://events.linkeddata 
.org/ldow2012/papers/ldow2012 
-inv-paper-2.pdf.

2.	 C. Bizer, T. Heath, and T. Berners-Lee, 
“Linked Data—The Story So Far,” Int’l 
J. Semantic Web and Information Sys-
tems, vol. 5, no. 3, 2009, pp.1–22.

3.	 A.L. Barabási, R. Albert, and H. 
Jeong, “Scale-Free Characteristics of 
Random Networks: The Topology of 
the World-Wide Web,” Physica A: Sta-
tistical Mechanics and Its Applications, 
vol. 281, no. 1, 2000, pp. 69–77.

4.	 R.V. Guha, D. Brickley, and S. Mac-
beth, “Schema.org: Evolution of 
Structured Data on the Web,” Comm. 
ACM, vol. 59, no. 2, 2016, pp. 44–51.

5.	 P.F. Patel-Schneider, “Analyzing 
Schema.org,” Proc. 13th Int’l Semantic 
Web Conf. (ISWC 14), 2014, pp. 261–276

6.	 R. Meusel, “Web-Scale Profiling of 
Semantic Annotations in HTML 
Pages,” doctoral dissertation, Univ. of 
Mannheim, 2016; https://ub-madoc 
.bib.uni-mannheim.de/41884/1 
/thesis_final_rm_20170322-1.pdf.

7.	 C. Bizer et al., “Deployment of RDFa, 
Microdata, and Microformats on 
the Web—A Quantitative Analysis,” 
Proc. 12th Int’l Semantic Web Conf. 

(ISWC 13), 2013, pp. 17–32.
8.	 P. Christen, Data Matching: Concepts 

and Techniques for Record Linkage, 
Entity Resolution, and Duplicate Detec-
tion, Springer, 2012.

9.	 M. Kejriwal and D.P. Miranker, 
“Semi-supervised Instance Matching 
Using Boosted Classifiers,” Proc. 12th 
European Semantic Web Conf. (ESWC 
15), 2015, pp. 388–402.

10.	 J. Volz et al., “Silk—A Link Discov-
ery Framework for the Web of Data,” 
Proc. WWW 2009 Workshop Linked 
Data on the Web (LDOW 09), 2009; 
http://events.linkeddata.org 
/ldow2009/papers/ldow2009 
_paper13.pdf.

11.	 M. Kejriwal, “Populating Entity 
Name Systems for Big Data integra-
tion,” Proc. 13th Int’l Semantic Web 
Conf. (ISWC 14), 2014, pp. 521–528.

12.	 M. Schmachtenberg, C. Bizer, and H. 
Paulheim, “Adoption of the Linked 
Data Best Practices in Different 
Topical Domains,” Proc. 13th Int’l 
Semantic Web Conf. (ISWC 14), 2014, 
pp. 245–260.

For more information 
on paper submission, 
featured articles, calls for 
papers, and subscription 
links visit:

www.computer.org/tmscs

SUBSCRIBE 
AND SUBMIT

IEEE TRANSACTIONS ON

MULTI-SCALE
COMPUTING
SYSTEMS

TMSCS is financially cosponsored 
by IEEE Computer Society, IEEE 

Communications Society, and 
IEEE Nanotechnology Council

TMSCS is technically cosponsored 
by IEEE Council on Electronic 

Design Automation

SUBMIT
TODAY

Read your subscriptions 
through the myCS 
publications portal at 

http://mycs.computer.org


